E-Mail
IMAGE: Short circuits in lithium metal batteries usually result from the lithium depositing unevenly on the anode during the charging process, forming protruding sharp needles known as dendrites. These cause the. view more
Credit: Illustration: Yen Strandqvist/Chalmers University of Technology There are high hopes for the next generation of high energy-density lithium metal batteries, but before they can be used in our vehicles, there are crucial problems to solve. An international research team led by Chalmers University of Technology, Sweden, has now developed concrete guidelines for how the batteries should be charged and operated, maximising efficiency while minimising the risk of short circuits.
E-Mail
IMAGE: The new material could be used to develop devices that convert blood pressure into a power source for pacemakers. view more
Credit: Image of pacemaker by Lucien Monfils, licensed under the Creative Commons Attribution-Share Alike 3.0 Unported, 2.5 Generic, 2.0 Generic and 1.0 Generic license.
A new type of ultra-efficient, nano-thin material could advance self-powered electronics, wearable technologies and even deliver pacemakers powered by heart beats.
The flexible and printable piezoelectric material, which can convert mechanical pressure into electrical energy, has been developed by an Australian research team led by RMIT University.
It is 100,000 times thinner than a human hair and 800% more efficient than other piezoelectrics based on similar non-toxic materials.
E-Mail
India has an energy problem. It currently relies heavily on coal and consumer demand is expected to double by 2040, making its green energy targets look out of reach. Part of the solution could come from harvesting energy from footsteps, say Hari Anand and Binod Kumar Singh from the University of Petroleum and Energy Studies in Dehradun, India. Their new study, published in the De Gruyter journal
Energy Harvesting and Systems, shows that Indian attitudes towards power generated through piezoelectric tiles are overwhelmingly positive.
Cities like Delhi and Mumbai are famously crowded, especially at railway stations, temples and big commercial buildings. This led researchers to wonder whether piezoelectric tiles, which produce energy through mechanical pressure, could turn this footfall into something useful.
Scantily clad tomb raiders and cloistered scholars piecing together old pots - these are the kinds of stereotypes of archaeology that dominate public perception. Yet archaeology in the new millennium is a world away from these images. In a major new report, researchers from the Max Planck Institute for the Science of Human History probe a thoroughly modern and scientific discipline to understand how it is helping to address the considerable challenges of the Anthropocene.
Credit: University of Tsukuba
Scientists at the University of Tsukuba show that using a layer of graphene just one atom thick improves the catalytic activity of nickel or copper when generating hydrogen gas, which may lead to cheaper fuel for zero-emission automobiles
Tsukuba, Japan - A team of researchers led by the Institute of Applied Physics at the University of Tsukuba has demonstrated a method for producing acid-resistant catalysts by covering them with layers of graphene. They show that using few layers allows for greater proton penetration during a hydrogen evolution reaction, which is crucial for maximizing the efficiency when producing H2 as fuel. This work may lead to industrial-scale manufacturing of hydrogen as a completely renewable energy source for vehicles that do not contribute to climate change.