Scientists at Empa and EPFL have identified a new type of defect as the most common source of disorder in on-surface synthesized graphene nanoribbons, a novel class of carbon-based materials that may prove extremely useful in next-generation electronic devices. The researchers identified the atomic structure of these so-called bite defects and investigated their effect on quantum electronic transport. These kinds of defective zigzag-edged nanoribbons may provide suitable platforms for certain applications in spintronics.
Researchers Investigate Defects in Bottom-Up Armchair Graphene Nanoribbons
Written by AZoNanoMay 19 2021
Graphene nanoribbons (GNRs), narrow strips of single-layer graphene, have interesting physical, electrical, thermal, and optical properties because of the interplay between their crystal and electronic structures. These novel characteristics have pushed them to the forefront in the search for ways to advance next-generation nanotechnologies.
While bottom-up fabrication techniques now allow the synthesis of a broad range of graphene nanoribbons that feature well-defined edge geometries, widths, and heteroatom incorporations, the question of whether or not structural disorder is present in these atomically precise GNRs, and to what extent, is still subject to debate. The answer to this riddle is of critical importance to any potential applications or resulting devices.
Researchers at Kanazawa University report in the
Journal of Physical Chemistry Letters how high-speed atomic force microscopy can be used for studying DNA wrapping processes. The technique enables visualizing the dynamics of DNA–protein interactions, which in certain cases resembles the motion of inchworms.
The genetic material of most organisms is carried by DNA, a complex organic molecule. DNA is very long for humans, the molecule is estimated to be about 2 m in length. In cells, DNA occurs in a densely packed form, with strands of the molecule coiled up in a complicated but efficient space-filling way. A key role in DNA s compactification is played by histones, structural-support proteins around which a part of a DNA molecule can wrap. The DNA–histone wrapping process is reversible the two molecules can unwrap and rewrap but little is known about the mechanisms at play. Now, by applying high-speed atomic-force microscopy (HS-AFM), Richard Wong and colleagu
Arizona State University
Photocatalysts are useful materials, with a myriad of environmental and energy applications, including air purification, water treatment, self-cleaning surfaces, pollution-fighting paints and coatings, hydrogen production and CO2 conversion to sustainable fuels.
An efficient photocatalyst converts light energy into chemical energy and provides this energy to a reacting substance, to help chemical reactions occur.
One of the most useful such materials is knows as titanium oxide or titania, much sought after for its stability, effectiveness as a photocatalyst and non-toxicity to humans and other biological organisms.
In new research appearing in the Journal of Physical Chemistry Letters, Scott Sayres and his research group describe their investigations into the molecular dynamics of titania clusters.