Scanning through data fresh off the telescope, we saw two ghosts dancing deep in the cosmos. We had never seen anything like it before, and we had no idea what they were.
Several weeks later, we had figured out we were seeing two radio galaxies, about a billion light years away. In the centre of each one is a supermassive black hole, squirting out jets of electrons that are bent into grotesque shapes by an intergalactic wind. The two galaxies we think are responsible for the streams of electrons (shown as curved arrows) that form the Dancing Ghosts. But we don’t understand what is causing the filament labelled as 3.
RAY NORRIS, THE CONVERSATION
20 DECEMBER 2020
At the very largest scale, the Universe consists of a cosmic web made of enormous, tenuous filaments of gas stretching between gigantic clumps of matter.
Or that s what our best models suggest. All we have seen so far with our telescopes are the stars and galaxies in the clumps of matter.
So is the cosmic web real, or a figment of our models? Can we confirm our models by detecting these faint gaseous filaments directly?
Until recently, these filaments have been elusive. But now a collaboration between Australian radio astronomers and German x-ray astronomers has detected one.
By Ray Norris, Professor, School of Science, Western Sydney University Ray Norris, Author provided
At the very largest scale, the Universe consists of a “cosmic web” made of enormous, tenuous filaments of gas stretching between gigantic clumps of matter. Or that’s what our best models suggest. All we have seen so far with our telescopes are the stars and galaxies in the clumps of matter.
So is the cosmic web real, or a figment of our models? Can we confirm our models by detecting these faint gaseous filaments directly?
Until recently, these filaments have been elusive. But now a collaboration between Australian radio astronomers and German x-ray astronomers has detected one.