Screening for SARS-CoV-2 non-structural protein 14 inhibitors
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome generates 16 distinct non-structural proteins (nsp) that constitute the enzymes and accessory proteins responsible for virus replication once inside a host cell. These protein complexes produce and cap RNA strands that will go on to be translated by the host machinery. Capping the RNA in a manner that is recognized as similar to endogenous mRNA ensures compatibility, lessens RNA degradation rates and lowers the probability of triggering an immune response in the host cell.
In a paper recently uploaded to the preprint server
et al. (April 8
th, 2021), inhibitors of one essential SARS-CoV-2 non-structural protein are explored, with four compounds, in particular, identified as potential antiviral leads that exhibit synergistic effects with antiviral drug remdesivir.
Pregnant women are at high risk for severe COVID-19 infection and death. Yet, insufficient safety data on babies has led many guidelines to leave the decision-making and potential threats to future mothers. While the vaccine trials did not directly test pregnant women, more real-world data suggests the vaccine may provide immunity benefits to newborns through breastmilk.
The role and ancestry of the SARS-CoV-2 spike protein glycan shield
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein is a class I fusion glycoprotein responsible for interacting with the angiotensin-converting enzyme 2 (ACE2) receptor on the surface of human cells, enabling cell entry. It is the primary target of both natural and vaccine-acquired neutralizing antibodies.
The spike protein is coated in a thick glycan shield that plays a role in target site recognition, towards both the ACE2 receptor and neutralizing antibodies, and in conformational stability, modulating the state of the spike protein between closed and open forms and granting stability to the open prefusion form, which affords enhanced affinity towards the ACE2 receptor by presenting the receptor-binding domain.
Lung microbiome predicts COVID-19 disease severity
A new preprint research paper posted to the
medRxiv server found changes to the lung microbiome during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection influence COVID-19 disease severity. Led by Ronald G. Collman from the University of Pennsylvania Perelman School of Medicine, they suggest a wide diversity in the microbiome is associated with less severe illness and the need for hospitalization.
Differences in the microbiome were observed in intubated patients who showed a higher prevalence for
Staphylococcus. Greater amounts of
The researchers write:
“We report profound dysbiosis of the respiratory tract bacterial and viral microbiome in hospitalized COVID-19 patients, which differs from that of non-COVID patients, exhibits accelerated destabilization over time, and associates with disease severity and systemic immune profiles.
A new study has been published on the medRxiv preprint server, which focuses on the development of a dual-antigen COVID-19' T cell' vaccine. This vaccine is developed based on the expression of both S protein and nucleocapsid (N) protein of SARS-CoV-2, using a next-generation human adenovirus serotype 5 (Ad5) platform.