6 RESEARCH TRIANGLE PARK, N.C. Kombucha tea, a trendy fermented beverage, inspired researchers to develop a new way to generate tough, functional materials using a mixture of bacteria and yeast similar to the kombucha mother used to ferment tea.
With Army funding, using this mixture, also called a SCOBY, or symbiotic culture of bacteria and yeast, engineers at MIT and Imperial College London produced cellulose embedded with enzymes that can perform a variety of functions, such as sensing environmental pollutants and self-healing materials.
The team also showed that they could incorporate yeast directly into the cellulose, creating living materials that could be used to purify water for Soldiers in the field or make smart packaging materials that can detect damage.
E-Mail
IMAGE: With Army funding, researchers developed a new way to generate tough, functional materials using a mixture of bacteria and yeast similar to the kombucha mother used to ferment tea. view more
Credit: Tzu-Chieh (Zijay) Tang, MIT
RESEARCH TRIANGLE PARK, N.C. Kombucha tea, a trendy fermented beverage, inspired researchers to develop a new way to generate tough, functional materials using a mixture of bacteria and yeast similar to the kombucha mother used to ferment tea.
With Army funding, using this mixture, also called a SCOBY, or symbiotic culture of bacteria and yeast, engineers at MIT and Imperial College London produced cellulose embedded with enzymes that can perform a variety of functions, such as sensing environmental pollutants and self-healing materials.
Credits: Photos: Samantha Smiley
Next image
The field of artificial intelligence is moving at a staggering clip, with breakthroughs emerging in labs across MIT. Through the Undergraduate Research Opportunities Program (UROP), undergraduates get to join in. In two years, the MIT Quest for Intelligence has placed 329 students in research projects aimed at pushing the frontiers of computing and artificial intelligence, and using these tools to revolutionize how we study the brain, diagnose and treat disease, and search for new materials with mind-boggling properties.
Rafael Gomez-Bombarelli, an assistant professor in the MIT Department of Materials Science and Engineering, has enlisted several Quest-funded undergraduates in his mission to discover new molecules and materials with the help of AI. “They bring a blue-sky open mind and a lot of energy,” he says. “Through the Quest, we had the chance to connect with students from other majors who
The field of artificial intelligence is moving at a staggering clip, with breakthroughs emerging in labs across MIT. Through the Undergraduate Research.