நானோ தொழில்நுட்பம் ஒருங்கிணைந்த உள்கட்டமைப்பு ப்ரோக்ர்யாம் News Today : Breaking News, Live Updates & Top Stories | Vimarsana
Penn Dental Medicine Researchers Developing Smart Dental Implant
prnewswire.com - get the latest breaking news, showbiz & celebrity photos, sport news & rumours, viral videos and top stories from prnewswire.com Daily Mail and Mail on Sunday newspapers.
Penn Dental Medicine Researchers Developing Smart Dental Implant
prnewswire.com - get the latest breaking news, showbiz & celebrity photos, sport news & rumours, viral videos and top stories from prnewswire.com Daily Mail and Mail on Sunday newspapers.
E-Mail
IMAGE: Ring microlasers are eyed as potential light sources for photonic applications, but they first must be made more powerful. Combining multiple microlasers into an array solves only half of the. view more
Credit: University of Pennsylvania
The field of photonics aims to transform all manner of electronic devices by storing and transmitting information in the form of light, rather than electricity. Beyond light s raw speed, the way that information can be layered in its various physical properties makes devices like photonic computers and communication systems tantalizing prospects.
Before such devices can go from theory to reality, however, engineers must find ways of making their light sources lasers smaller, stronger and more stable. Robots and autonomous vehicles that use LiDAR for optical sensing and ranging, manufacturing and material processing techniques that use lasers, and many other applications are also continually pushing the field of phot
Abstract
We report light-driven levitation of macroscopic polymer films with nanostructured surface as candidates for long-duration near-space flight. We levitated centimeter-scale disks made of commercial 0.5-micron-thick mylar film coated with carbon nanotubes on one side. When illuminated with light intensity comparable to natural sunlight, the polymer disk heats up and interacts with incident gas molecules differently on the top and bottom sides, producing a net recoil force. We observed the levitation of 6-mm-diameter disks in a vacuum chamber at pressures between 10 and 30 Pa. Moreover, we controlled the flight of the disks using a shaped light field that optically trapped the levitating disks. Our experimentally validated theoretical model predicts that the lift forces can be many times the weight of the films, allowing payloads of up to 10 milligrams for sunlight-powered low-cost microflyers at altitudes of 50 to 100 km.