Price:
To enable the development of wearable devices that possess advanced ultraviolet (UV) detection functions, scientists from
Nanyang Technological University, Singapore (NTU Singapore) have created a new type of light sensor that is both flexible and highly sensitive.
While invisible to the human eye, UV rays surround us in our environment, and excessive exposure can cause health issues including skin cancer and premature skin ageing. The intensity of UV rays is typically reported through an index during weather reports. A wearable device, such as a T-shirt or watch that monitors the actual personal UV exposure throughout the day, would be a useful and more accurate guide for people seeking to avoid sun damage.
E-Mail
Irvine, Calif., Jan. 5, 2021 Scientists at the University of California, Irvine have developed a new deep-learning framework that predicts gene regulation at the single-cell level.
Deep learning, a family of machine-learning methods based on artificial neural networks, has revolutionized applications such as image interpretation, natural language processing and autonomous driving. In a study published recently in
Science Advances, UCI researchers describe how the technique can also be successfully used to observe gene regulation at the cellular level. Until now, that process had been limited to tissue-level analysis.
According to co-senior author Xiaohui Xie, UCI professor of computer science, the framework enables the study of transcription factor binding at the cellular level, which was previously impossible due to the intrinsic noise and sparsity of single-cell data. A transcription factor is a protein that controls the translation of genetic information from DNA t