E-Mail
HOUSTON - (Jan. 7, 2021) - Proteogenomic analysis may offer new insight into matching cancer patients with an effective therapy for their particular cancer. A new study identifies three molecular subtypes in head and neck squamous cell carcinoma (HNSCC) that could be used to better determine appropriate treatment. The research led by Baylor College of Medicine, Johns Hopkins University and the National Cancer Institute s Clinical Proteomic Tumor Analysis Consortium (CPTAC) is published in the journal
Cancer Cell.
Researchers profiled proteins, phosphosites and signaling pathways in 108 human papillomavirus-negative HNSCC tumors in order to understand how genetic aberrations drive tumor behavior and response to therapies. Currently, there are a few FDA-approved therapies for HNSCC, including an epidermal growth factor receptor (EGFR) monoclonal antibody (mAb) inhibitor and two PD-1 inhibitors, but response rates are moderate. In this study, researchers aimed to find out w
FOR IMMEDIATE RELEASE
In what is believed to be the most comprehensive molecular characterization to date of the most common type of head and neck cancer, researchers from the Johns Hopkins departments of pathology and oncology, the Johns Hopkins Kimmel Cancer Center, the Johns Hopkins University School of Medicine, and 18 other centers around the U.S. and Poland have clarified the contribution of key cancer-associated genes, proteins and signaling pathways in these cancers, while proposing possible new treatment avenues.
Their deep-dive investigation of HPV-negative head and neck squamous cell carcinomas (HNSCCs), described in the Jan. 7 issue of the journal
Cancer Cell, involved tumors from 108 patients who had not yet received cancer treatment, and 66 samples of healthy tissue surrounding the tumors. The study systematically catalogued HPV-negative HNSCC-associated proteins, phosphosites (areas where they are modified by phosphate groups) and signaling pathways, finding three
Date Time
Proteogenomics helps treat certain squamous cell carcinomas
Proteogenomic analysis may offer new insight into matching cancer patients with an effective therapy for their particular cancer. A new study identifies three molecular subtypes in head and neck squamous cell carcinoma (HNSCC) that could be used to better determine appropriate treatment. The research led by Baylor College of Medicine, Johns Hopkins University and the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium (CPTAC) is published in the journal Cancer Cell.
Researchers profiled proteins, phosphosites and signaling pathways in 108 human papillomavirus-negative HNSCC tumors in order to understand how genetic aberrations drive tumor behavior and response to therapies. Currently, there are a few FDA-approved therapies for HNSCC, including an epidermal growth factor receptor (EGFR) monoclonal antibody (mAb) inhibitor and two PD-1 inhibitors, but response rates are moderate. In this stu