E-Mail
IMAGE: From a backcountry area near Lake Tahoe, Desert Research Institute scientist Monica Arienzo collects field data from her smartphone for the Tahoe Rain or Snow project. January 2021. view more
Credit: Desert Research Institute
Reno, Nev. (Feb. 22, 2021)- Normally, we think of the freezing point of water as 32°F - but in the world of weather forecasting and hydrologic prediction, that isn t always the case. In the Lake Tahoe region of the Sierra Nevada, the shift from snow to rain during winter storms may actually occur at temperatures closer to 39.5°F, according to new research from the Desert Research Institute (DRI), Lynker Technologies, and citizen scientists from the Tahoe Rain or Snow project.
E-Mail
IMAGE: (Left) Predicted change of ocean surface temperature in 2050-2099 relative to 1950-1999 using an ensemble of climate models. (Right) Predicted change in amplitude of rainfall fluctuations (year-to-year standard deviation) in. view more
Credit: Credit: Kyung-Sook Yun
The El Niño-Southern Oscillation (ENSO) is the most energetic naturally occurring year-to-year variation of ocean temperature and rainfall on our planet. The irregular swings between warm and wet El Niño conditions in the equatorial Pacific and the cold and dry La Niña state influence weather conditions worldwide, with impacts on ecosystems, agriculture and economies. Climate models predict that the difference between El Niño- and La Niña-related tropical rainfall will increase over the next 80 years, even though the temperature difference between El Niño and La Niña may change only very little in response to global warming. A new study published in
Plant responses to climate drivers such as temperature and precipitation may become visible only years after the actual climate event. This is a key result of new research led by the German Centre of Integrative Biodiversity Research (iDiv), the Martin Luther University Halle-Wittenberg (MLU) and the Helmholtz Centre for Environmental Research (UFZ) published in Global Change Biology. The results indicate that climate drivers may have different effects on the survivorship, growth and reproduction of plant species than suggested by earlier studies.
Credit: Evgeny Chuvilin
Researchers from the Oil and Gas Research Institute of the Russian Academy of Sciences and their Skoltech colleagues have surveyed the newest known 30-meter deep gas blowout crater on the Yamal Peninsula, which formed in the summer of 2020. The paper was published in the journal
Geosciences.
Giant craters in the Russian Arctic, thought to be the remnants of powerful gas blowouts, first attracted worldwide attention in 2014, when the 20 to 40-meter wide Yamal Crater was found quite close to the Bovanenkovo gas field. The prevailing hypothesis is that these craters are formed after gas is accumulated in cavities in the upper layers of permafrost, and increasing pressure ultimately unleashes an explosive force. Most of these craters are rather short-lived as they apparently quickly fill with water over several years and turn into small lakes. As of now, there are some 20 known and studied craters.