vimarsana.com

Page 141 - வேதியியல் இயற்பியல் பொருட்கள் அறிவியல் News Today : Breaking News, Live Updates & Top Stories | Vimarsana

Helium nuclei at the surface of heavy nuclei discovered

 E-Mail The experiment was performed at the Research Center for Nuclear Physics (RCNP) in Osaka. The research team, lead by scientists from TU Darmstadt and the GSI Helmholtz Center for Heavy-Ion Research, and from the RIKEN Nishina Center for Accelerator-Based Science, discuss the new findings in a contribution to the latest issue of the journal Science . The strong interaction binds neutrons and protons together to atomic nuclei. The knowledge of properties of nuclei and their theoretical description is basis for our understanding of nuclear matter and the development of the universe. Laboratory-based studies of reactions between atomic nuclei provide means to explore nuclear properties. These experiments allow to test and verify theories that describe properties of extended nuclear matter at different conditions, as present, for instance, in neutron stars in the universe. Several theories predict the formation of nuclear clusters like helium nuclei in dilute nuclear matter.

Spreading the sound

 E-Mail Tsukuba, Japan - A team of researchers lead by the University of Tsukuba have created a new theoretical model to understand the spread of vibrations through disordered materials, such as glass. They found that as the degree of disorder increased, sound waves traveled less and less like ballistic particles, and instead began diffusing incoherently. This work may lead to new heat- and shatter-resistant glass for smartphones and tablets. Understanding the possible vibrational modes in a material is important for controlling its optical, thermal, and mechanical properties. The propagation of vibrations in the form of sound of a single frequency through amorphous materials can occur in a unified way, as if it was a particle. Scientists like to call these quasiparticles phonons. However, this approximation can break down if the material is too disordered, which limits our ability to predict the strength of glass under a wide range of circumstances.

Giving the hydrogen economy an acid test

Credit: University of Tsukuba Scientists at the University of Tsukuba show that using a layer of graphene just one atom thick improves the catalytic activity of nickel or copper when generating hydrogen gas, which may lead to cheaper fuel for zero-emission automobiles Tsukuba, Japan - A team of researchers led by the Institute of Applied Physics at the University of Tsukuba has demonstrated a method for producing acid-resistant catalysts by covering them with layers of graphene. They show that using few layers allows for greater proton penetration during a hydrogen evolution reaction, which is crucial for maximizing the efficiency when producing H2 as fuel. This work may lead to industrial-scale manufacturing of hydrogen as a completely renewable energy source for vehicles that do not contribute to climate change.

Concept for a hybrid-electric plane may reduce aviation s air pollution problem

 E-Mail At cruising altitude, airplanes emit a steady stream of nitrogen oxides into the atmosphere, where the chemicals can linger to produce ozone and fine particulates. Nitrogen oxides, or NOx, are a major source of air pollution and have been associated with asthma, respiratory disease, and cardiovascular disorders. Previous research has shown that the generation of these chemicals due to global aviation results in 16,000 premature deaths each year. Now MIT engineers have come up with a concept for airplane propulsion that they estimate would eliminate 95 percent of aviation s NOx emissions, and thereby reduce the number of associated early deaths by 92 percent.

New state of matter in one-dimensional quantum gas

 E-Mail As the story goes, the Greek mathematician and tinkerer Archimedes came across an invention while traveling through ancient Egypt that would later bear his name. It was a machine consisting of a screw housed inside a hollow tube that trapped and drew water upon rotation. Now, researchers led by Stanford University physicist Benjamin Lev have developed a quantum version of Archimedes screw that, instead of water, hauls fragile collections of gas atoms to higher and higher energy states without collapsing. Their discovery is detailed in a paper published Jan. 14 in Science. My expectation for our system was that the stability of the gas would only shift a little, said Lev, who is an associate professor of applied physics and of physics in the School of Humanities and Sciences at Stanford. I did not expect that I would see a dramatic, complete stabilization of it. That was beyond my wildest conception.

© 2025 Vimarsana

vimarsana © 2020. All Rights Reserved.