vimarsana.com

This paper studies sample delivery in a multi-hop network where a power beacon charges devices via radio frequency (RF) signals. Devices forward samples with a deadline from a source to a sink. The goal is to minimize the power beacon’s transmit power and guarantee that samples arrive at the sink with probability (1-) by their deadline, where is a given probability of failure. A key challenge is that the power beacon does not have instantaneous channel gains information to devices and also between devices; i.e., it does not know the energy level of devices. To this end, we formulate a chance-constrained stochastic program for the problem at hand, and employ the sample-average approximation (SAA) method to compute a solution. We also outline two novel approximation methods: Sampling based Probabilistic Optimal Power Allocation (S-POPA) and Bayesian Optimization based Probabilistic Optimal Power Allocation (BO-POPA). Briefly, S-POPA generates a set of candidate solutions and iteratively learns the solution that returns a high probability of success. On the other hand, BO-POPA applies the Bayesian optimization framework to construct a surrogate model to predict the reward value of transmit power allocations. Numerical results show that the performance of S-POPA and BO-POPA achieves on average 86.91% and 79.25% of the transmit power computed by SAA.

Related Keywords

,Probabilistic Optimal Power Allocation ,Bayesian Optimization ,Array Signal Processing ,Headline ,Energy Transfer ,Imperfect Knowledge ,Nternet Of Things ,Monte Carlo ,Ptimization ,Robabilistic Logic ,Radio Frequency ,Delays ,Resource Management ,Stochastic Optimization ,

© 2025 Vimarsana

vimarsana.com © 2020. All Rights Reserved.