Purpose: A detector assembly based on a 2D silicon array sensor, Octa, was previously demonstrated to be accurate for small field relative dosimetry. Experimental studies showed angular dependence of the response that has also variations with the field size. A Monte Carlo simulation model was developed and used in this work to study how the detector assembly's components contribute to the observed angular dependence. Methods: Geant4 was used as the Monte Carlo code. A detailed model of the Octa detector and its packaging was placed in the centre of a solid water phantom with the central sensitive volumes (SVs) located at the isocentre and irradiated at polar angles from 0 to 180° (the beam was normal to the detector plane at 0°). Phase-space files from the IAEA database were used to model a CyberKnife X-ray beam with collimator diameters of 5, 10, and 15 mm. Reference simulations were compared with previous experimental results. To investigate the impact of the assembly's m