Copyright Diamond Light Source Ltd
In June 2019, an international team brought the complete skull of the 3.67-million-year-old Little Foot Australopithecus skeleton, from South Africa to the UK and achieved unprecedented imaging resolution of its bony structures and dentition in an X-ray synchrotron-based investigation at the UK s national synchrotron, Diamond Light Source. The X-ray work is highlighted in a new paper in
e-Life, published Mar. 2 focusing on the inner craniodental features of Little Foot. The remarkable completeness and great age of the Little Foot skeleton makes it a crucially important specimen in human origins research and a prime candidate for exploring human evolution through high-resolution virtual analysis.
New technology allows scientists first glimpse of intricate details of Little Foot’s life
Applications of X-ray synchrotron-based analytical techniques in evolutionary studies have opened up new avenues in the field of (paleo) anthropology. In particular, X-ray synchrotron microtomography has proved to be enormously useful for observing the smallestanatomical structures in fossils that are traditionally only seen by slicing through the bonesand looking at them under a microscope. Through the last decade, there have been more studies in palaeo anthropology using synchrotron radiation to investigate teeth and brain imprints in fossil hominins. However, scanning a complete skull such as the one of ‘Little Foot’ and aiming to reveal very small details using a very high-resolution was quite challenging, but the team managed to develop a new protocol that madethis possible. To recover the smallest possible details from a fairly large and very fragile fossil, the team decided to ima