E-Mail
IMAGE: (a) Illustration of the structure of a nanodiamond quantum sensor coated with a pyrogenic polymer, and how it operates as a hybrid nanoheater/thermometer. (b) Electron microscope image of hybrid sensors.. view more
Credit: Osaka University
Osaka, Japan - A team of scientists from Osaka University, The University of Queensland, and the National University of Singapore s Faculty of Engineering used tiny nanodiamonds coated with a heat-releasing polymer to probe the thermal properties of cells. When irradiated with light from a laser, the sensors acted both as heaters and thermometers, allowing the thermal conductivity of the interior of a cell to be calculated. This work may lead to a new set of heat-based treatments for killing bacteria or cancer cells.
Researchers from the Institute of Cosmos Sciences of the University of Barcelona present a microscopic theory of lattice quantum droplets which explains the formation of a new type of quantum droplets that has been experimentally observed in ultracold atomic systems.
Scientists at the Institute of Physics of the University of Tartu have found a way to develop optical quantum computers of a new type. Central to the discovery are rare earth ions that have certain characteristics and can act as quantum bits. These would give quantum computers ultrafast computation speed and better reliability compared to earlier solutions. The University of Tartu researchers Vladimir Hizhnyakov, Vadim Boltrushko, Helle Kaasik and Yurii Orlovskii published the results of their research in the scientific journal
A new study, led by a theoretical physicist at Berkeley Lab, suggests that never-before-observed particles called axions may be the source of unexplained, high-energy X-ray emissions surrounding a group of neutron stars.
E-Mail
The experiment was performed at the Research Center for Nuclear Physics (RCNP) in Osaka. The research team, lead by scientists from TU Darmstadt and the GSI Helmholtz Center for Heavy-Ion Research, and from the RIKEN Nishina Center for Accelerator-Based Science, discuss the new findings in a contribution to the latest issue of the journal
Science .
The strong interaction binds neutrons and protons together to atomic nuclei. The knowledge of properties of nuclei and their theoretical description is basis for our understanding of nuclear matter and the development of the universe. Laboratory-based studies of reactions between atomic nuclei provide means to explore nuclear properties. These experiments allow to test and verify theories that describe properties of extended nuclear matter at different conditions, as present, for instance, in neutron stars in the universe. Several theories predict the formation of nuclear clusters like helium nuclei in dilute nuclear matter.