Deployment planning of distributed rooftop photovoltaic (PV) systems remains a critical challenge for high-density cities, due to complex shading effects and diversified rooftop availabilities. Furthermore, such planning for large-scale systems could be extremely complex due to high dimensionality caused by the enormous number of buildings. To tackle the challenge, this study proposed an optimal planning strategy for municipal-scale distributed rooftop PV systems in high-density cities. The optimization problem was solved by integer learning programming, based on high-accuracy solar energy potentials characterization. By selecting proper rooftops for PV, the electricity generation was maximized, considering the conflicting budget and peak-export-power constraints. A Hong Kong-based case study (including 582 real building rooftops) was conducted. The effectiveness of the proposed strategy was verified by comparing with 5,000,000 Monte-Carlo-generated alternatives. The strategy more effe
Accurate rooftop solar energy potential characterization is critically important for promoting the wide penetration of renewable energy in high-density cities. However, it has been a long-standing challenge due to the complex building shading effects and diversified rooftop availabilities. To overcome the challenge, this study proposed a novel 3D-geographic information system (GIS) and deep learning integrated approach, in which a 3D-GIS-based solar irradiance analyzer was developed to predict dynamic rooftop solar irradiance by taking shading effects of surrounding buildings into account. A deep learning framework was developed to identify the rooftop availabilities. Experimental validations have shown their high accuracies. As a case study, a real urban region of Hong Kong was used. The results showed that the annual solar energy potential of the entire building group was reduced by 35.7% due to the shading effect and the reduced rooftop availability. The reductions of individual bui