The world's first satellite capable of detecting industrial sources of carbon emissions from space has just reached orbit — and it promises to be a game-changer.
The world s first satellite capable of detecting industrial sources of carbon emissions from space has just reached orbit — and it promises to be a game-changer.
Accurate accounting of emissions and removals of CO2 is critical for the planning and verification of emission reduction targets in support of the Paris Agreement. Here, we present a pilot dataset of country-specific net carbon exchange (NCE; fossil plus terrestrial ecosystem fluxes) and terrestrial carbon stock changes aimed at informing countries' carbon budgets. These estimates are based on "top-down"NCE outputs from the v10 Orbiting Carbon Observatory (OCO-2) modeling intercomparison project (MIP), wherein an ensemble of inverse modeling groups conducted standardized experiments assimilating OCO-2 column-Averaged dry-Air mole fraction (XCO2) retrievals (ACOS v10), in situ CO2 measurements or combinations of these data. The v10 OCO-2 MIP NCE estimates are combined with "bottom-up"estimates of fossil fuel emissions and lateral carbon fluxes to estimate changes in terrestrial carbon stocks, which are impacted by anthropogenic and natural drivers. These flux an
In 2013, the National Oceanic and Atmospheric Administration (NOAA) reported that atmospheric concentrations of carbon dioxide (CO2) had reached 400 parts per million (ppm) for the first time since the Pliocene Era (ca.