vimarsana.com

Department Of Computer Systems News Today : Breaking News, Live Updates & Top Stories | Vimarsana

VCSU Announces First Master of Science Degree

Obits | INFORUM

Scientists investigated more thoroughly Walker breakdown in 3D magnetic nanowires

Credit: FEFU press office Physicists from Russia, Chile, Brazil, Spain, and the UK, have studied how the magnetic properties change in 3D nanowires, promising materials for various magnetic applications, depending on the shape of their cross-section. Particularly, they more deeply probed into the Walker breakdown phenomenon, on the understanding of which the success of the implementation of the future electronics devices depends. The research outcome appears in Scientific Reports. The cross-sectional geometry of a three-dimensional nanowire affects the domain wall dynamics and therefore is crucial for their control. In turn, managing the DW dynamics under various external conditions is necessary in order to realize the future electronics and computing devices, operating on new physical principles. Such equipment will be faster, more reliable, smaller, and more energy-efficient. An example of it is magnetic memory, generators of magnetic signals, magnetic logic devices.

Scientists suggested a method to improve performance of methanol fuel cells

Credit: FEFU press office Fuel cells based on methanol oxidation have a huge potential in the motor and technical industries. To increase their energy performance, scientists suggest using electrodes made of thin palladium-based metallic glass films. A group of researchers from Far Eastern Federal University (FEFU), Austria, Turkey, Switzerland, and the UK has developed a new metallic glass for this application. The results were reported in the Nanoscale journal. Thin films of palladium-based metallic glass, with gold and silicon additives (Pd79Au9Si12) are prospective materials for the production of energy generation catalysts for direct methanol fuel cells. In the future, they might replace less efficient and more expensive platinum-based elements.

© 2025 Vimarsana

vimarsana © 2020. All Rights Reserved.