Textile-based microfluidics offer new opportunities for developing low-cost, open surface-assessable analytical systems for the electrophoretic analysis of complex chemical and biological matrixes. In contrast to electrophoretic fluidic transport in typical chip-based enclosed capillaries where direct access to the sample zone during analysis is a real challenge. Herein, we demonstrate that electrophoretic selectivity could be easily manipulated on these inverted low-cost bespoke textile substrates via a simple surface-functionalization to manipulate, redirect, extract, and characterize charged analytes. This simple approach enables significant improvement in the electrophoretic separation and isotachophoretic (ITP) preconcentration of charged solutes at the surface of open surface-accessible 3D textile constructs. In this work, polyester 3D braided structures have been developed using the conventional braiding technique and used as the electrophoretic substrates, which were modified b