The availability of electric vehicle (EV) charging facilities is crucial to the EV application, which is a promising solution to minimize fossil oil consumption and greenhouse gas (GHG) emissions. Nevertheless, satisfying EV charging requests through the electric grid might result in grid destabilization owing to a rapid spike in load profile. The effective implementation of an optimized renewable energy (RE)-based hybrid energy storage system (HESS) can reduce the sudden impact of EV charging on the grid, can diminish the increased power demand from the utility grid, and reduce the GHG emission. This article has proposed an optimal solution for HESS-integrated EV charging stations (CSs) in Riyadh, Saudi Arabia. Three different HESS configurations such as; grid-dependent system, off-grid PV-wind-battery energy storage system (BESS)-based system, and grid-connected PV-wind-BESS-based system for EV charging stations are designed and investigated. The simulation results are analyzed consi
Bangladesh, along with the rest of the world, has come to a point where full transition to the use of green energy is one of the only options left to tackle global warming and impacts of climate change. Corruption-free green energy goal can also be an alternative to oil and gas imports – especially in the face of the global energy crisis.