Non-Gaussian spatial and spatio-temporal data are becoming increasingly prevalent, and their analysis is needed in a variety of disciplines. FRK is an R package for spatial and spatio-temporal modeling and prediction with very large data sets that, to date, has only supported linear process models and Gaussian data models. In this paper, we describe a major upgrade to FRK that allows for non-Gaussian data to be analyzed in a generalized linear mixed model framework. These vastly more general spatial and spatio-temporal models are fitted using the Laplace approximation via the software TMB. The existing functionality of FRK is retained with this advance into non-Gaussian models; in particular, it allows for automatic basis-function construction, it can handle both point-referenced and areal data simultaneously, and it can predict process values at any spatial support from these data. This new version of FRK also allows for the use of a large number of basis functions when modeling the s