This study evaluated the mechanical properties and self-healing performance of freshly casted and 19-month-aged bioconcrete samples with integrated sulfate-reducing bacteria (SRB) and nitrate-reducing bacteria (NRB) granules that were cultivated in an upflow anaerobic sludge blanket (UASB) reactor with synthetic wastewater. The 28-day compressive strength fulfilled the design requirement of 50 MPa. The apparent volume of permeable voids (AVPV) of fresh and aged bioconcrete met the limit of 13%. The self-healing ability was determined by exposing cracked bioconcrete to water media such as glucose, calcium acetate, tap water, and wastewater, which have shown calcite deposition in fresh and aged samples. The highest amount of calcite deposition was seen on fresh samples after glucose exposure (420 μm) and on aged bioconcrete after calcium acetate exposure (320 μm). Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDS/XRD) results demonstrated that SRB/NRB gran
Using waste-activated sludge as a source for non-axenic sulfate-reducing bacterial (SRB) granules, this study developed an innovative bioconcrete with 1% and 2% SRB granules. The mechanical properties (AS 1012.9 and AS 1012.21) and self-healing performance of bioconcrete was systematically examined. The 28-d compressive strength of bioconcrete samples met the design requirement of 50 MPa and the general limit of 13% for average volume of permeable voids (AVPV). Within 3–4 weeks, both 1% and 2% bioconcrete samples precipitated 300–400 µm of calcite in different water media such as glucose, calcium acetate, tap water, and real wastewater. The SEM analysis revealed that SRB granules survived mortar incorporation and precipitated calcium carbonate in the form of calcite which were further confirmed by EDS and XRD analysis. The tap water healed 1% and 2% bioconcrete samples had water permeabilities 64.2% and 69.9% lower than the control, respectively. The mass loss in 5% sulfuric acid
Regular monitoring and timely repair of concrete cracks are required to minimize further deterioration. Self-healing of cracks has been proposed as an alternative to the crack maintenance procedures. One of the proposed techniques is to use axenic cultures to exploit microbial-induced calcite precipitation (MICP). However, such healing agents are not cost-effective for in situ use. As the market for bio-based self-healing concrete necessitates a low-cost bio-agent, nonaxenic sulfate reducing bacterial (SRB) granules were investigated in this study through cultivation in an upflow anaerobic sludge blanket reactor. The compact granules can protect the bacteria from adverse conditions without encapsulation. This study investigated the microbial activities of SRB granules at different temperatures, pH, and chemical oxygen demand concentrations which the microbes would experience during the concrete casting and curing process. The attenuation and recovery of microbial activities were measur
CHENNAI:Indian Institute of Technology Madras Researchers have developed a structured model to help in the production of bio-cement, which is an alternative sustainable process for cementation. It has the potential to reduce the production of Carbon