Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Abstract
In this paper, we tackle a challenging problem of Few-shot Object Detection rather than recognition. We propose Power Normalizing Second-order Detector consisting of the Encoding Network (EN), the Multi-scale Feature Fusion (MFF), Second-order Pooling (SOP) with Power Normalization (PN), the Hyper Attention Region Proposal Network (HARPN) and Similarity Network (SN). EN takes support image crops and a query image per episode to produce covolutional feature maps across several layers while MFF combines them into multi-scale feature maps. SOP aggregates them per support image while PN detects the presence of visual feature instead of counting its frequency of occurrence. HARPN cross-correlates the PN pooled support features against the query feature map to match regions and produce query region proposals that are then aggregated with SOP/PN. Fi