- The potentials and commercial applications in the NISQ era for Quantum computing, Quantum communication, and Quantum sensing.
- Quantum computing applications for optimization, machine learning, and chemistry. Quantum communication applications with classical (e.g., PQC) or Quantum approach (e.g., QKD). Quantum sensing applications for medical devices, aerospace, and defense industries.
”Finding appropriate algorithms and problems is really challenging for Quantum Computers now,“ said Rupak Biswas, Ph.D., Director of NASA Exploration Technology, who mentioned this during one of the keynote speeches.
On Monday, at 10:00 AM (EST time zone) on April 12, 2021, Quantum.Tech (Alpha Events, 2021) started an internationally accessible virtual event discussing the exciting potential commercial applications of Quantum computing, Quantum communication, and Quantum sensing. The no-chargeable event is sponsored by big players in the industry such as IBM, AWS, Honeywell, and D-Wave, inclu
Qubits Comprised Of Holes Could Be The Trick To Build Faster, Larger Quantum Computers
A new study indicates holes the solution to operational speed/coherence trade-off, potential scaling up of qubits to a mini-quantum computer.
Quantum computers are predicted to be much more powerful and functional than today’s ‘classical’ computers.
One way to make a quantum bit is to use the ‘spin’ of an electron, which can point either up or down. To make quantum computers as fast and power-efficient as possible we would like to operate them using only electric fields, which are applied using ordinary electrodes.
Although spin does not ordinarily ‘talk’ to electric fields, in some materials spins can interact with electric fields indirectly, and these are some of the hottest materials currently studied in quantum computing.
UNSW Sydney Scientia Professor Sven Rogge has been elected President of the Australian Institute of Physics (AIP). The AIP is dedicated to promoting the.