vimarsana.com

Research Center Coherentx Ray Optics For Megascience News Today : Breaking News, Live Updates & Top Stories | Vimarsana

A new approach will help save X-ray studies from failing results

Credit: IKBFU X-rays are widely used to study the structures of various objects. New sources of x-rays, like Free Electron Lasers and 4th generation synchrotrons are being built around the Globe. The best optics for the new sources is usually made of the single crystal materials, such as silicon, germanium or diamond. However, the ideal periodicity of crystals leads to some unwanted diffraction losses - X-ray glitches. This effect causes dips in the intensity of the radiation transmitted through the optical element, down to zero. Scientists from the Immanuel Kant Baltic Federal University with foreign colleagues have developed a method that allows not only to predict the appearance of glitches but even to eliminate their influence on experiments.

Scientists suggested using defective diamonds in x-ray optics

 E-Mail X-rays are used to study the atomic and microstructure properties of matter. Such studies are conducted with special accelerator complexes called synchrotrons. A synchrotron source generates powerful electromagnetic radiation with a wavelength equal to fractions of a nanometer. Some X-rays are reflected from the atomic planes of a crystal and some go through the crystal plane that plays the role of a beam-splitter (or the so-called semitransparent mirror). If the radiation passes through monochromators-optical devices that consist of two or more ideal crystals - its optimal exit wavelength can be regulated. The parameters of electromagnetic radiation depend on the material that the optical element is made of. By improving the properties of optical devices one can increase the quality and efficiency of X-ray research methods and use modern scientific unique megascience facility to their full potential.

© 2025 Vimarsana

vimarsana © 2020. All Rights Reserved.