Although it is commonly assumed that power swing is symmetrical and will have identical effects on all three-phase voltages and currents, there is another type of power swing, which is asymmetrical and mainly occurs during single-pole tripping (SPT), the impact of which on power systems integrated with the inverter-based resources (IBRs) has not been investigated so far. Since the likelihood of the occurrence of asymmetrical power swing is increasing in todays heavily loaded transmission lines, this paper investigates the impact of IBR integration on the performance of distance protection during single-pole tripping. Furthermore, a new scheme is proposed to detect earth faults that occur during asymmetrical power swings to enhance the performance of power swing blocking (PSB) functions. To do so, the superimposed component of the zero-sequence current during SPT is extracted. Then, the moving average window is used to calculate the average of both zero-sequence current and its superimp