Harmful bacteria can find their way into the water we consume despite treatment prior to distribution. In the face of water scarcity and aging infrastructure, there is a need for innovative, affordable, and portable solutions to sustainably provide safe drinking water across the globe.
Engineering researchers from the University of Pittsburgh will use a $500K CAREER award from the NSF to create a sustainable material design framework to mitigate pathogen exposure in this invaluable resource.
E-Mail
IMAGE: An illustration of the novel self-aware metamaterial system as used in a coronary artery stent. The design can sense restenosis when used in a stent, and the same design can. view more
Credit: iSMaRT Lab
From the biggest bridges to the smallest medical implants, sensors are everywhere, and for good reason: The ability to sense and monitor changes before they become problems can be both cost-saving and life-saving.
To better address these potential threats, the Intelligent Structural Monitoring and Response Testing (iSMaRT) Lab at the University of Pittsburgh Swanson School of Engineering has designed a new class of materials that are both sensing mediums and nanogenerators, and are poised to revolutionize the multifunctional material technology big and small.
E-Mail
IMAGE: Scientists Matt Eichenfield, left, and Lisa Hackett led the team at Sandia National Laboratories that created the world s smallest and best acoustic amplifier. view more
Credit: Bret Latter, Sandia National Laboratories
ALBUQUERQUE, N.M. Scientists at Sandia National Laboratories have built the world s smallest and best acoustic amplifier. And they did it using a concept that was all but abandoned for almost 50 years.
According to a paper published May 13 in Nature Communications, the device is more than 10 times more effective than the earlier versions. The design and future research directions hold promise for smaller wireless technology.
Modern cell phones are packed with radios to send and receive phone calls, text messages and high-speed data. The more radios in a device, the more it can do. While most radio components, including amplifiers, are electronic, they can potentially be made smaller and better as acoustic devices. This means they woul
Researchers at the University of South Florida have developed a novel approach to mitigating electromigration in nanoscale electronic interconnects that are ubiquitous in state-of-the-art integrated circuits. This was achieved by coating copper metal interconnects with hexagonal boron nitride (hBN), an atomically-thin insulating two-dimensional (2D) material that shares a similar structure as the wonder material graphene.
Engineers and chemists at Southwest Research Institute have teamed up to create a low-cost method of harvesting water from atmospheric air on a much larger scale than previously attempted. Supported by $300,000 in internal research funding, the group is using silica gel beads, which are commonly used to keep items from gathering moisture during shipment, to capture water molecules from the air around us.