The rapid development of deep learning has demonstrated its potential for deployment in many intelligent service systems. However, some issues such as optimisation (e.g., how to reduce the deployment resources costs and further improve the detection speed), especially in scenarios where limited resources are available, remain challenging to address. In this paper, we aim to delve into the principles of deep neural networks, focusing on the importance of network neurons. The goal is to identify the neurons that exert minimal impact on model performances, thereby aiding in the process of model pruning. In this work, we have thoroughly considered the deep learning model pruning process with and without fine-tuning step, ensuring the model performance consistency. To achieve our objectives, we propose a methodology that employs adversarial attack methods to explore deep neural network parameters. This approach is combined with an innovative attribution algorithm to analyse the level of net