Credit: Nilesh?P. Salke
Tungsten hexanitride with armchairlike hexazine N6 ring has been synthesized by a group of scientists led by Dr. Jin Liu and his former postdoc Nilesh Salke at HPSTAR (Center for High Pressure Science & Technology Advanced Research). WN6 is a promising high-energy-density and superhard material. Their findings are published in the recent issue of
Physical Review Letters.
Diatomic nitrogen is the most abundant molecule in Earth s atmosphere accounting for almost 78% volume. The strong triple bond in nitrogen makes it very stable and unreactive at near ambient conditions. However, in the intense-pressure and high-temperature conditions, nitrogen will behave entirely differently, it can form double- or even single-bonded structure or react with other elements to form novel nitrides. Single-bonded polymeric nitrogen or nitrides possessing single-bonded nitrogen are of great scientific interest as a high-energy-density material. And transition metal nitrides ar
Michigan Tech engineers look into the untapped potential of parking lots in a study that investigates the energy-related benefits of developing charging stations powered with solar canopies built into the parking infrastructure of large-scale retailers like Walmart.
A team of Russian scientists from NUST MISIS, Tomsk Polytechnic University (TPU) and Boreskov Institute of Catalysis has suggested a new approach to modifying the combustion behavior of coal. The addition of copper salts reduces the content of unburnt carbon in ash residue by 3.1 times and CO content in the gaseous combustion products by 40%, the scientists found. The research was published in
Researchers led by Prof. CUI Guanglei from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) of the Chinese Academy of Sciences (CAS) have identified what causes lithium metal batteries (LMBs) to self-destruct and proposed a way to prevent it.
New research has identified a nanostructure that improves the anode in lithium-ion batteries. Instead of using graphite for the anode, the researchers turned to silicon: a material that stores more charge but is susceptible to fracturing. The team deposited silicon atoms on top of metallic nanoparticles to form an arched nanostructure, increasing the strength and structural integrity of the anode. Electrochemical tests showed the batteries had a higher charge capacity and longer lifespan.