Abstract
During the Paleozoic, sedimentary basins developed within Gondwana without evolving to diverging plate boundaries. Such intracontinental basins present long subsidence histories with multiple phases of accelerated subsidence that are not always easily explained by far-field tectonic forces, and may be driven by processes other than rifting and thermal subsidence. Here we investigate the subsidence of Paleozoic Australian intracontinental basins by comparing one-dimensional backstripped tectonic subsidence histories from the western Australian Canning and Southern Carnarvon Basins and the central Australian Cooper Basin to forward subsidence models for pure shear lithospheric thinning. We make the hypothesis that differences between observed and model subsidence may be explained by mantle-flow driven topography, in addition to tectonic forces. To test this hypothesis, we compute dynamic topography from the first geodynamic models of mantle flow spanning the entire Phanerozoi