E-Mail
IMAGE: Top left and the bottom right are Google Earth satellite images of the Brumadinho tailings dam taken before and after the collapse on 25 January 2019. Top right and bottom. view more
Credit: Google Earth
One of Brazil s worst environmental disasters - a dam collapse that also killed more than 200 people - could have been foreseen with the right monitoring technology, according to a new study by the University of Nottingham and Durham University.
The high-profile catastrophe took place on 25 January 2019 at a tailings dam near the Córrego do Feijão iron ore mine, close to the town of Brumadinho, in Minas Gerais state, south-east Brazil.
E-Mail
IMAGE: A schematic illustration of the synthesis of GQDs with different stratagies and their applications in the domain of biosensors. view more
Credit: Authors
In a paper published in
NANO, researchers from Hubei, China discuss the top-down and bottom-up strategies for the synthesis of Graphene quantum dots (GQDs). The respective advantages and disadvantages of these methods are summarized. With regard to some important or novel ones, the mechanisms are proposed for reference. In addition, the application of GQDs in biosensors is highlighted in detail.
At present, various top-down methods, such as oxidative cutting, hydrothermal or solvothermal reactions, electrochemical oxidation, ultrasonic-assisted or microwave-assisted process, chemical vapor deposition (CVD) have been reported to produce GQDs. Meanwhile, the bottom-up methods have been developed rapidly, which mainly include carbonization methods and stepwise organic synthesis. Owing to excellent photo
E-Mail
A grant of approx. DKK 21 million (EUR 2.8 million) from the EU framework programme for research and innovation, Horizon 2020 will help a research team from the Department of Biological and Chemical Engineering at Aarhus University to lead a global collaboration aiming to develop new technologies to produce green ammonia.
In terms of volume, ammonia is today one of the ten most important chemicals manufactured globally. The substance is primarily used in the production of fertilisers for modern agriculture, but has lately been envisaged as an opportunity to reduce carbon footprint for other industries, for instance the marine sector.
However, ammonia production is currently far from sustainable and carbon-free. The primary method of producing the annual approx. 235 million tonnes of ammonia used the world over is the Haber-Bosch process, which was invented more than 100 years ago.
Credit: Video credit belongs to the American Chemical Society.
Robots are widely used to build cars, paint airplanes and sew clothing in factories, but the assembly of microscopic components, such as those for biomedical applications, has not yet been automated. Lasers could be the solution. Now, researchers reporting in
ACS Applied Materials & Interfaces have used lasers to create miniature robots from bubbles that lift, drop and manipulate small pieces into interconnected structures. Watch a video of the bubble microrobots in action here.
As manufacturing has miniaturized, objects are now being constructed that are only a few hundred micrometers long, or about the thickness of a sheet of paper. But it is hard to position such small pieces by hand. In previous studies, scientists created microscopic bubbles using light or sound to assemble 2D items. Also, in a recent experiment, microbubbles produced by lasers, focused and powerful beams of light, could rotate shapes in 3D space
E-Mail
IMAGE: Short circuits in lithium metal batteries usually result from the lithium depositing unevenly on the anode during the charging process, forming protruding sharp needles known as dendrites. These cause the. view more
Credit: Illustration: Yen Strandqvist/Chalmers University of Technology There are high hopes for the next generation of high energy-density lithium metal batteries, but before they can be used in our vehicles, there are crucial problems to solve. An international research team led by Chalmers University of Technology, Sweden, has now developed concrete guidelines for how the batteries should be charged and operated, maximising efficiency while minimising the risk of short circuits.