Chinese Academy of Sciences
Recently, the research team led by Prof. KONG Lingtao from Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS) prepared a highly active single iron atom catalyst (Fe-ISAs@CN) which can activate H
2O
2 to generate free radicals, achieving rapid removal of sulfadiazine pollutants in aqueous. The relevant results were published in Journal of Colloid and Interface Science.
Sulfadiazine (SDZ), a kind of synthetic sulfadiazine antibiotic, is widely used in clinical and animal husbandry industries. However, due to its large-scale use and unqualified discharge of wastewater, more and more antibiotic residues are detected in the water environment. These antibiotics are still highly toxic at very low concentrations. Due to the stable chemical structure of sulfadiazine, it is difficult to solve the residual problem with conventional processing technology.
According to a new study, fly ash (leftover particles from coal-burning) constitute from 37% to 72% of all particulate organic carbon carried by the Yangtze River in China, or about 200,000 to 400,000 tons of carbon annually.
A group of researchers from the Shanghai Institute of Optics and Fine Mechanics (SIOM) of the Chinese Academy of Sciences recently came up with a new theory on the source of residual infrared absorption in Ti:sapphire laser crystals.
Chinese Academy of Sciences
Recently, a research group from Shanghai Institute of Optics and Fine Mechanics (SIOM) of the Chinese Academy of Sciences proposed a new theory on the origin of residual infrared absorption in Ti:sapphire laser crystals. The related research results have been published in Photonics Research on May 4, 2021.
Ti:sapphire (also called Ti-doped α-Al
2O
3) is one of the three basic laser crystal materials. Due to its excellent physical and chemical, spectral, and laser properties, Ti:sapphire has been one of the key materials for super-intense ultrafast laser devices.
Since the laser properties of Ti:sapphire was reported in 1982, the residual infrared absorption (with peak value around 800 nm), coincident with the laser emission band, has been the key problem affecting its laser emission efficiency. Therefore, the determination of the origin of residual infrared absorption has been a research hotspot in the community of Ti:sapphire laser crystals.