Using a laser for a rare brain surgery to treat drop seizures, which cause a child with epilepsy to suddenly fall, holds some advantages over a traditional open craniotomy, including shorter hospital stays for patients, a study led by UT Southwestern researchers indicates.
Researchers identify potential therapeutic target to prevent neurodegeneration after a stroke
Researchers with the Peter O Donnell Jr. Brain Institute at UT Southwestern have identified a new protein implicated in cell death that provides a potential therapeutic target that could prevent or delay the progress of neurodegenerative diseases following a stroke.
Scientists from the departments of pathology, neurology, biochemistry, and pharmacology at UTSW have identified and named AIF3, an alternate form of the apoptosis-inducing factor (AIF), a protein that is critical for maintaining normal mitochondrial function. Once released from mitochondria, AIF triggers processes that induce a type of programmed cell death.
UT Southwestern Medical Center
April 27, 2021 – Researchers with the Peter O’Donnell Jr. Brain Institute at UT Southwestern have identified a new protein implicated in cell death that provides a potential therapeutic target that could prevent or delay the progress of neurodegenerative diseases following a stroke.
Scientists from the departments of pathology, neurology, biochemistry, and pharmacology at UTSW have identified and named AIF3, an alternate form of the apoptosis-inducing factor (AIF), a protein that is critical for maintaining normal mitochondrial function. Once released from mitochondria, AIF triggers processes that induce a type of programmed cell death.
In a study published in the journal Molecular Neurodegeneration, the UT Southwestern team collaborated with researchers at The Johns Hopkins University School of Medicine and found that, following a stroke, the brain switches from producing AIF to producing AIF3. They also reported that stroke triggers a process k
UTSW researchers identify the structure of a key cell-surface protein news-medical.net - get the latest breaking news, showbiz & celebrity photos, sport news & rumours, viral videos and top stories from news-medical.net Daily Mail and Mail on Sunday newspapers.
E-Mail
IMAGE: UTSW scientists have characterized three different conformations of alpha 7, a key cell-surface protein. view more
Credit: Leah Baxter
DALLAS - March 17, 2021 - UT Southwestern researchers have identified the structure of a key member of a family of proteins called nicotinic acetylcholine receptors in three different shapes. The work, published online today in
Cell, could eventually lead to new pharmaceutical treatments for a large range of diseases or infections including schizophrenia, lung cancer, and even COVID-19.
Nicotinic acetylcholine receptors are members of a broader super-family of proteins called Cys-loop receptors that function as ion channels on cell surfaces and are found in the membranes of many cell types. When the right molecule settles on these receptors, it opens the gated channels, letting ions flood from the outside to the inside of cells to trigger other cellular processes. Nicotinic acetylcholine receptors respond to acetylchol