vimarsana.com

Page 5 - வளர்ச்சி ப்ரோக்ர்யாம் ஆஃப் சீனா News Today : Breaking News, Live Updates & Top Stories | Vimarsana

Scientists uncover how resistance proteins protect plants from pathogens

 E-Mail 2+ ion flux and immune responses view more  Credit: BI et al., Cell In plants, disease resistance proteins serve as major immune receptors that sense pathogens and pests and trigger robust defense responses. Scientists previously found that one such disease resistance protein, ZAR1, is transformed into a highly ordered protein complex called a resistosome upon detection of invading pathogens, providing the first clue as to how plant disease resistance proteins work. Precisely how a resistosome activates plant defenses, however, has been unclear. A joint team led by Profs. ZHOU Jianmin, CHEN Yuhang and HE Kangmin at the Institute of Genetics and Developmental Biology of the Chinese Academy of Sciences and Prof. CHAI Jijie at Tsinghua University recently employed state-of-the-art electrophysiology and single-molecule imaging to investigate the molecular mechanism by which the ZAR1 resistosome activates plant immunity.

Combined Voronoi-FDEM Approach for Modelling Post-Fracture Response of Laminated Tempered Glass

Shanghai Jiao Tong University In this work, a combined Voronoi and finite-discrete element method (FDEM) approach for reconstructing the post-fracture model of laminated glass (LG) was proposed. The fracture morphology was determined via introducing Voronoi tessellation with statistical distribution parameters such as the fragment face numbers, volume and sphericity. The residual interaction between glass fragments was described with cohesive zone model. One fractured LG block under uniaxial tension, which was taken from a triple layered LG beam with ionoplast interlayers, was modelled and validated with experimentally recorded data. Through iteration analysis, the key cohesive parameters were determined for the most applicable model. It is followed by investigating the influence due to the fragments interaction property. The results show that the cohesion and frictional property can be combined to well describe the residual interaction behaviour between fragments. The frictional p

Researchers demonstrate very high specificity of prime editors in plants

 E-Mail IMAGE: a, PE rates at endogenous on-target and off-target sites. b, Experimental design and work flow of whole-genome sequencing. c, d, Numbers of SNVs (c) and Indels (d) identified by WGS. view more  Credit: IGDB Prime editing (PE), a search-and-replace CRISPR-based genome editing technique, has great potential for gene therapy and agriculture. It can introduce desired base conversions, deletions, insertions, and combination edits into target genomic sites. Prime editors have been successfully applied in animals and plants, but their off-target effects, which can be a major hindrance to real-life application, have not been thoroughly evaluated until now. Prof. GAO Caixia from the Institute of Genetics and Developmental Biology (IGDB) of the Chinese Academy of Sciences (CAS) and her research team recently performed a comprehensive and genome-wide analysis of the off-target effects of PEs in rice plants.

Stretching the boundaries of medical tech with wearable antennae

 E-Mail IMAGE: The wearable transmitter is designed to compress its top layer in a double arch pattern, shown here, to respond to movement without compromising signal transmission. view more  Credit: Huanyu Cheng, Penn State Current research on flexible electronics is paving the way for wireless sensors that can be worn on the body and collect a variety of medical data. But where do the data go? Without a similar flexible transmitting device, these sensors would require wired connections to transmit health data. Huanyu Larry Cheng, Dorothy Quiggle Career Development Assistant Professor of Engineering Science and Mechanics in the Penn State College of Engineering, and two international teams of researchers are developing devices to explore the possibilities of wearable, flexible antennae. They published two papers in April in Nano-Micro Letters and

© 2025 Vimarsana

vimarsana © 2020. All Rights Reserved.