Chinese Academy of Sciences
Recently, Chinese scientists reported a new class of two-dimensional (2D) third-order nonlinear optical (NLO) materials, called metallated graphynes. The new material, exhibits broadband (at both 532 and 1064 nm) saturable absorption NLO property and high laser damage threshold.
Researchers prepared two free-standing mercurated graphyne nanosheets by applying an interface-assisted bottom-up method. The large-area nanosheets derived from the chemical growth have shown their layered molecular structural arrangement, controllable thickness and enhanced π-conjugation. The mercurated graphyne nanosheets are therefore having stable and outstanding broadband nonlinear saturable absorption properties.
With the help of the absorption ability, the metallated graphynes are acting as saturable absorbers. And it has better pulse properties and Q-switched performances, especially comparing with traditional 2D materials (like graphene, black phosphorus).
China s large-scale cryogenic refrigeration technology, which is fundamental for important industrial sectors such as aerospace and hydrogen energy, has made a major breakthrough, with the ability to cool down -271C with hundred-watt level power.
China s major scientific research project for developing the large-scale cryogenic refrigeration system in liquid helium to superfluid helium temperature range has passed experts appraisal, Xinhua reported on Saturday. This project is supported by the Ministry of Finance and undertaken by the Technical Institute of Physics and Chemistry of the Chinese Academy of Sciences (TIPC-CAS).
China can now develop large-scale cryogenic refrigeration equipment with a liquid helium temperature of 4.2K (-269 C) kilowatt level and superfluid helium temperature of 2K (-271C) hundred-watt level, a milestone which has broken technology monopoly by the developed countries, and made China s large-scale cryogenic refrigeration technology reach th
Metal ion sieving using a bioinspired nanochannel membrane
CREDIT
XIN Weiwen
Abstract:
Lithium is an energy-critical element that is considered to be a geopolitically significant resource. However, the supply of lithium may not be enough to meet continuously increasing demand. As a result, scientists are looking for new ways to extract lithium ions.
Bionic idea boosts lithium-ion extraction
Beijing, China | Posted on January 1st, 2021
Ion selective membranes have already been used extensively for water treatment and ion sieving in electrodialysis technology. However, conventional membranes exhibit low and useless Li+ selectivity, making them insufficient for meeting industry requirements.
Chinese scientists have recently made progress in the preparation and application of a bioinspired material that is capable of achieving controlled ion transport and sieving, especially for lithium-ion extraction.
Credit: XIN Weiwen
Lithium is an energy-critical element that is considered to be a geopolitically significant resource. However, the supply of lithium may not be enough to meet continuously increasing demand. As a result, scientists are looking for new ways to extract lithium ions.
Ion selective membranes have already been used extensively for water treatment and ion sieving in electrodialysis technology. However, conventional membranes exhibit low and useless Li
+ selectivity, making them insufficient for meeting industry requirements.
Chinese scientists have recently made progress in the preparation and application of a bioinspired material that is capable of achieving controlled ion transport and sieving, especially for lithium-ion extraction.