Researchers from the Institute of Cosmos Sciences of the University of Barcelona present a microscopic theory of lattice quantum droplets which explains the formation of a new type of quantum droplets that has been experimentally observed in ultracold atomic systems.
E-Mail
IMAGE: a, Schematic of the dual-shot magnetization dynamics acquired by a time-resolved magneto-optical imaging system. The inset illustrates the magnetization dynamics of Gd27Fe63.87Co9.13 under dual-shot excitation with certain conditions. ?t is. view more
Credit: by Sicong Wang, Chen Wei, Yuanhua Feng, Hongkun Cao, Wenzhe Li, Yaoyu Cao, Bai-Ou Guan, Arata Tsukamoto, Andrei Kirilyuk, Alexey V. Kimel, and Xiangping Li
The development of ultrafast all-optical switches has long been a popular topic in photonics, while the speed of magnetization reversal triggered by means other than magnetic fields has recently attracted intense interest in spintronics. The discovery of all-optical helicity-dependent switching in metallic GdFeCo has promised a merger of the fields of photonics and spintronics, paving the way for faster and more energy-efficient information processing technologies. However, the real potential of all-optical switching is still poorly understood be
Scientists at the Institute of Physics of the University of Tartu have found a way to develop optical quantum computers of a new type. Central to the discovery are rare earth ions that have certain characteristics and can act as quantum bits. These would give quantum computers ultrafast computation speed and better reliability compared to earlier solutions. The University of Tartu researchers Vladimir Hizhnyakov, Vadim Boltrushko, Helle Kaasik and Yurii Orlovskii published the results of their research in the scientific journal
A new study, led by a theoretical physicist at Berkeley Lab, suggests that never-before-observed particles called axions may be the source of unexplained, high-energy X-ray emissions surrounding a group of neutron stars.
A team led by Prof. YU Shuhong from the University of Science and Technology of China reported a bio-inspired lotus-fiber-mimetic spiral structure BC hydrogel fiber with high strength, high toughness, excellent biocompatibility, good stretchability, and high energy dissipation.