E-Mail
IMAGE: Brandon Grainger (left) and Paul Ohodnicki received $820,000 from the Office of Naval Research to create new materials and manufacturing processes for ultra-wide bandgap semiconductors. view more
Credit: University of Pittsburgh
As electrification advancement accelerates and more renewables are integrated into the electric grid, improved power electronics systems are needed to convert AC or DC power into a usable form. New semiconductor device materials and advanced magnetic materials can enable an unprecedented combination of voltage levels and power handling capabilities.
However, the latest class of new switching devices, which use so-called ultra-wide bandgap (UWBG) semiconductor materials, will also require improved soft magnetic materials and manufacturing approaches not currently available.
E-Mail
IMAGE: Scientists are at the brink of being able to detect ET Life, which was predicted to be difficult decades ago. New techniques suggest there might be clever analytical tricks using. view more
Credit: NASA
Scientists have begun the search for extraterrestrial life in the Solar System in earnest, but such life may be subtly or profoundly different from Earth-life, and methods based on detecting particular molecules as biosignatures may not apply to life with a different evolutionary history. A new study by a joint Japan/US-based team, led by researchers at the Earth-Life Science Institute (ELSI) at the Tokyo Institute of Technology, has developed a machine learning technique which assesses complex organic mixtures using mass spectrometry to reliably classify them as biological or abiological.
E-Mail
IMAGE: An illustrative scenario of the observed effect is shown. The pulses with a subpicosecond duration pulsed in the soft X-ray generated from FERMI@elettra interacts with a submicrometric metallic foil. The. view more
Credit: by Carino Ferrante, Emiliano Principi, Andrea Marini, Giovanni Batignani, Giuseppe Fumero, Alessandra Virga, Laura Foglia, Riccardo Mincigrucci, Alberto Simoncig, Carlo Spezzani, Claudio Masciovecchio, Tullio Scopigno.
The relevance for radiology applications is probably the most known advantage of X-ray beams (keV energies) with respect to visible radiation (eV energies) and can be traced back to their superior penetration depth. On a more fundamental ground, however, the relevance of this photon energy range relies on the capability of probing inner shell electrons (as they have comparable binding energies) and mapping molecular structures on the atomic-scale (as typical interatomic spacings are comparable to X-ray wavelengths). Buil