E-Mail
IMAGE: A visualization of the Glashow event recorded by the IceCube detector. Each colored circle shows an IceCube sensor that was triggered by the event; red circles indicate sensors triggered earlier. view more
Credit: IceCube Collaboration
On December 6, 2016, a high-energy particle called an electron antineutrino hurtled to Earth from outer space at close to the speed of light carrying 6.3 petaelectronvolts (PeV) of energy. Deep inside the ice sheet at the South Pole, it smashed into an electron and produced a particle that quickly decayed into a shower of secondary particles. The interaction was captured by a massive telescope buried in the Antarctic glacier, the IceCube Neutrino Observatory.
There s a surprising amount of information stored in the hardened plaque, or calculus, between teeth. And if that calculus belongs to the remains of a person who lived in ancient times, the information could reveal new insights about the past. But the tiny samples can be difficult to work with. Now, in ACS
An international team of scientists performed theoretical and experimental research on a new high-temperature superconductor, yttrium hydride (YH6). Until 2015, 138 K (or 166 K under pressure) was the record of high-temperature superconductivity. Room-temperature superconductivity, which would have been laughable five years ago, has become a reality. Right now, the whole point is to attain room-temperature superconductivity at lower pressures. Scientists reported that YH6 displays a superconducting transition at ?224 K at 166 GPa.
An international research team led by NUST MISIS has developed a new iron-cobalt-nickel nanocomposite with tunable magnetic properties. The nanocomposite could be used to protect money and securities from counterfeiting. The study was published in Nanomaterials.
Researchers at the University of Vienna and the Austrian Academy of Sciences, led by Markus Aspelmeyer have succeeded in measuring the gravitational field of a gold sphere, just 2 mm in diameter, using a highly sensitive pendulum - and thus the smallest gravitational force. The experiment opens up new possibilities for testing the laws of gravity on previously unattained small scales. The results are published in the journal Nature.