A team of scientists led by Nanyang Technological University (NTU Singapore) and Rice University in the US, has uncovered the key to the outstanding toughness of hexagonal boron nitride (h-BN). h-BN can withstand ten times the amount of force that graphene can, which is known as one of the toughest materials on Earth.
Scientists replicate the molecular properties of the natural cement used by barnacles and mussels to create a powerful adhesive using silk protein. The new adhesive can work well in both dry and underwater conditions.
Skoltech scientists have studied the hydroxyl defects in LiFePO4, a widely used cathode material in commercial lithium-ion batteries, contributing to the overall understanding of the chemistry of this material. This work will help improve the LiFePO4 manufacturing process to avoid formation of adverse intrinsic structural defects which deteriorate its performance.
The spatially resolved determination of which of the two enantiomorphic structural variants the left-handed or the right-handed of a chiral phase is present in a polycrystalline material is the focus of our publication in Science Advances. With the EBSD (electron backscatter diffraction) -based technique, this is shown for the first time for the chiral element structure β-Mn for which a determination of the handedness with usual x-ray diffraction methods is not possible so far.