Scientists detect small pockets of carbon dioxide-rich liquid water in a meteorite dating from the early solar system By studying ancient meteorite fragments, scientists can gain important insights into how our solar system formed eons ago. Now, in a new study, researchers have discovered carbon dioxide-rich liquid water inside a meteorite from an asteroid that formed 4.6 billion years ago. This finding suggests that the meteorite’s parent asteroid formed beyond Jupiter’s orbit before being transported into the inner solar system and provides key evidence for the dynamics of the Solar System’s formation. Water is abundant in our solar system. Even outside of our own planet, scientists have detected ice on the moon, in Saturn’s rings and in comets, liquid water on Mars and under the surface of Saturn’s moon Enceladus, and traces of water vapor in the scorching atmosphere of Venus. Studies have shown that water played an important role in the early evolution and formation of the solar system. To learn more about this role, planetary scientists have searched for evidence of liquid water in extraterrestrial materials such as meteorites, most of which originate from asteroids that formed in the early history of the solar system.