Setting boundaries for neural networks : vimarsana.com

Setting boundaries for neural networks


Risk.net
Quants unveil new technique for controlling extrapolation by neural networks
According to a popular internet meme, there are two types of people in this world: those who can extrapolate from incomplete data.
Neural networks will probably struggle with that one. As quants race to deploy neural networks in finance, they are running into a common problem. Neural networks require huge datasets to train, but they do not always extrapolate well when faced with new situations.  
“Neural networks can fit the data very well within the region of training, but can produce completely unpredictable and uncontrolled results outside of that,” says Michael Konikov, head of quantitative development at Numerix.

Related Keywords

Vladimir Piterbarg , Monte Carlo , Alexandre Antonov , Michael Konikov , Linkedin , Danske Bank , Facebook , Natwest , Antonov , Natwest Markets , Neural Networks , Artificial Neural Network , Machine Learning , Deep Learning , Extrapolation , Model Calibration , Four Take , Views , மான்டே கார்லோ , அலெக்ஸாண்ட்ரே அன்டோனோவ் , சென்டர் , முகநூல் , அன்டோனோவ் , நரம்பியல் நெட்வொர்க்குகள் , செயற்கை நரம்பியல் வலைப்பின்னல் , இயந்திரம் கற்றல் , ஆழமான கற்றல் , மாதிரி அளவுத்திருத்தம் , அவர் எடுத்துக்கொள்ளுங்கள் , காட்சிகள் ,

© 2025 Vimarsana