E-Mail IMAGE: Electrodes are transcribed by printing electrodes on hydrogels and rolling fibers over electrodes(Left), Characteristics of modality and actual cardiac measurement applied to phototematic flow measurement at the fingertips by inserting... view more Credit: Korea Institute of Science and Technology(KIST) Advances in wearable devices have enabled e-textiles, which fuse lightweight and comfortable textiles with smart electronics, and are garnering attention as the next-generation wearable technology. In particular, fiber electronic devices endowed with electrical properties, while retaining the specific characteristics of textiles, are key elements in manufacturing e-textiles. Optoelectronic devices are generally constructed using layers of semiconductors, electrodes, and insulators; their performance is greatly affected by the size and structure of the electrodes. Fiber electronic components for e-textiles need to be fabricated on thin, pliable threads; since these devices cannot be wider than threads having diameter of a few micrometers, it is a challenge to improve the performances of such fiber electronic components. However, a team of Korean scientists has been receiving attention after developing a new technology to overcome these limitations.