The Four Innovation Phases of Netflix's Trillions Scale Real

The Four Innovation Phases of Netflix's Trillions Scale Real-time Data Infrastructure | by Zhenzhong Xu | Feb, 2022

The blog post will share the four phases of Real-time Data Infrastructure’s iterative journey in Netflix (2015-2021). For each phase, we will go over the evolving business motivations, the team’s unique challenges, the strategy bets, and the use case patterns we discovered along the way.

Related Keywords

Linkedin Kafka , Matt Willian , Prashanth Ramdas , Steven Wu , Guanhua Jiang , David Sun , Scott Shi , Kafka Flink , Martin Kleppmann , Zhenzhong Xu , Data Movement , Netflix , Data Movement Use , Infrastructure Health , Delivery Network , Event Sourced Flink Content Delivery Network , Four Innovation Phases , Trillions Scale Real Time Data , Real Time Data Infrastructure , Stream Processing Engines , Flink Platform , Pstream Processing , Data Engineering , Machine Learning , Data Platform , Data Platforms , Chip Huyen , Goku Mohandas , Astasia Myers , Four Phases , Rescue Netflix Logs From , Failing Batch Pipelines , Apache Kafka , Apache Samza , Apache Flink , Processing Patterns Summary , Example Use Cases , Data Routing , Data Artisan , Apache Mesos , Data Governance , Streaming Transport , Control Plane , Data Movement Use Cases , Support Custom Needs , Scale Beyond , Use Cases , Netflix Recommendation , Central Platform , Ops Decision , Event Sourced , Content Delivery Network , Materialized View , Linux Kernel , Expand Stream Processing Responsibilities , Content Production Studio , Distributed Cache , Data Engineer , Change Data Capture , Data Mesh , Database Inside , Streaming Backfill , Pipeline Failure , Data Quality Control , Data Quality , Sink Agnostic , Data Synchronization , Search Indexing Pipeline , Intelligent Operation , Data Infrastructure , Processing Patterns ,

© 2025 Vimarsana