Musculoskeletal disorders might be severe, but employers in the construction industry can put precautions in place to minimize their impact on workers.
Graphite plugged bronze has been primarily applied as the self-lubricating part in the tough oilless conditions, and understanding the detailed wear characteristics and the contacting stress evolution of graphite plugged bronze was important to improve its design for the in-service reliability. This study investigated the wear characteristics and contacting stress of graphite plugged bronze sliding plate from the field trial by means of the multiple topographic characterizations and computational analysis. The results revealed that abrasive wear and adhesive wear predominated on the contacting surface of graphite plugged bronze plate, accompanied by the localized fatigue and erosion. Computational simulation well illustrated the increasingly accumulated stress at the boundary between bronze and graphite as referenced with the stress evolution of bronze matrix and graphite plug, which was considered to be the leading cause of aggravated wear over time. Finding from this study provided t