vimarsana.com

Although Ghana is a leading global cocoa producer, its production and yield have experienced declines in recent years due to various factors, including long-term climate change such as increasing temperatures and changing rainfall patterns, as well as drought events. With the increasing exposure of cocoa-producing regions to extreme weather events, the vulnerability of cocoa production is also expected to rise. Supplemental irrigation for cocoa farmers has emerged as a viable adaptation strategy to ensure a consistent water supply and enhance yield. However, understanding the potential for surface and groundwater irrigation in the cocoa-growing belt remains limited. Consequently, this study aims to provide decision-support maps for surface and groundwater irrigation potential to aid planning and investment in climate-smart cocoa irrigation. Utilizing state-of-the-art geospatial and remote sensing tools, data, and methods, alongside in-situ groundwater data, we assess the irrigation potential within Ghana's cocoa-growing areas. Our analysis identified a total area of 22,126 km2 for cocoa plantations and 125.2 km2 for surface water bodies within the cocoa-growing regions. The multi-criteria analysis (MCA) revealed that approximately 80% of the study area exhibits moderate to very high groundwater availability potential. Comparing the MCA output with existing borehole locations demonstrated a reasonable correlation, with about 80% of existing boreholes located in areas with moderate to very high potential. Boreholes in very high potential areas had the highest mean yield of 90.7 l/min, while those in low groundwater availability potential areas registered the lowest mean yield of 58.2 l/min. Our study offers a comprehensive evaluation of water storage components and their implications for cocoa irrigation in Ghana. While groundwater availability shows a generally positive trend, soil moisture and surface water have been declining, particularly in the last decade. These findings underline the need for climate-smart cocoa irrigation strategies that make use of abundant groundwater resources during deficit periods. A balanced conjunctive use of surface and groundwater resources could thus serve as a sustainable solution for maintaining cocoa production in the face of climate change.

Related Keywords

Ghana ,Indonesia ,China ,Brazil ,Dominican Republic ,India ,Saaty Tran ,European Union Copernicus ,Shuttle Radar Topographic Mission ,Sanitation Agency ,Community Water ,Climate Change Initiative ,Google Inc ,Geological Survey Of Ghana ,Cover Type Product ,Change Initiative ,European Union ,Synthetic Aperture Radar ,Interferometric Wide Swath ,Grey Level Co Occurrence Matrix ,Google Earth Engine ,Google Earth ,Random Forest ,Machine Learning Algorithm ,Sub Saharan Africa ,Digital Elevation Model ,Western North ,Geological Survey ,Machine Learning Approach ,Analytical Hierarchical Procedure ,Gravity Recovery ,Climate Experiment ,Global Land Data Assimilation System ,Google Colab ,

© 2025 Vimarsana

vimarsana.com © 2020. All Rights Reserved.