vimarsana.com

Page 14 - Composite Structures News Today : Breaking News, Live Updates & Top Stories | Vimarsana

A hybrid tubular standing support for underground mines: Compressive b by Hongchao Zhao, Ting Ren et al

Abstract This paper presents the development of an innovative standing support for underground mines. The main feature of this standing support is its exterior container, a combination of polyvinyl chloride (PVC) with large rupture strain and fibre-reinforced polymer (FRP) with high strength-to-weight ratio. To demonstrate the advantages of this cementitious grout filled PVC-FRP tubular (PFT) standing support, a series of compression tests were conducted. Test variables included the strength of cementitious grout infill material and the thickness of FRP jacket. Compression tests were also conducted on cementitious grout-filled PVC tubular (PT) support and cementitious grout-filled FRP tubular (FT) support. These tests showed that PFT support presents a typical strain-hardening behaviour together with an outstanding axial deformation ability (>20% of the overall height of the support). In addition, the maximum compressive strength of PFT support is much higher than that of the corres

Sharing of General Loading in Double Glazed Units: The BAM Analytical Approach

b Maffeis Engineering S.p.A, Italy Double Glazed Units (DGUs) consist of two glass panes held together by structural edge seals. Calculation methods for DGUs consider that actions applied on one pane develop effects in all the panes, due to the coupling from the entrapped gas. Various methods have been proposed in standards to evaluate this load sharing, which depends upon the stiffness of the glass panes, the thicknesses of spacer and the size of the DGU. A comprehensive analytical formulation, the Betti’s Analytical Method (BAM), has been recently proposed to calculate the load sharing in DGUs of any shape, composed by glass panes of arbitrary thickness, with various support conditions at the borders and various types of external actions, including concentrated and line loads. Simple expressions can determine the gas pressure as a function of a universal shape function, which coincides with the deformed surface of a simply supported plate, of the same shape of the DGU, under un

DLR launches EmpowerAX to industrialize continuous fiber 3D printing

DLR discussed EmpowerAX at ITHEC 2020, and I followed up with Xenia Stumpf and Maik Titze at DLR. Here, I share what I’ve learned. Concepts for direct fiber integration in composites 3D printing. Information source: Alexander Matschinski, Virtual Symposium on AFP and AM, TU Munich, Chair of Carbon Composites (LCC), Sep. 2020. Photo Credit: “3D printing with continuous fiber: A landscape”, CW Oct 2020. Why additive extrusion? DLR has developed an impregnation technology for continuous fiber-reinforced thermoplastic 3D printing filaments that reduces production costs by up to 80%.  Photo Credit: 3D-printed CFRP components – A new impregnation technology reduces costs. “We are developing fiber impregnation technologies with thermoplastics for more industrial, cost-effective production,” explains Maik Titze, responsible for additive manufacturing at DLR Institute of Composite Structures and Adaptive Systems in Braunschweig. “This includes designing our own industri

© 2025 Vimarsana

vimarsana © 2020. All Rights Reserved.