High-entropy alloy matrix solid-lubricating composites (HSLCs) are promising anti-wear and friction-reduced materials to meet the demands of complicated engineering applications. Here we present a strategy to develop HSLCs by using the coupled high-entropy phases of (BCC + FCC + L21) with near-equal volume fraction as the matrix material, instead of using the usual single phase-dominated high-entropy phases, which can preserve the intrinsic strength and deformability of the matrix while activating adaptive wear protection during sliding. This enables a low coefficient of frictions of 0.23–0.31 and wear rates within the order of 10–6–10–5 mm3 N m–1 for the (CrFeNi)83(AlTi)17-Ag-BaF2/CaF2 HSLC between room-temperature and 800 °C, considerably outperforming the reported HSLCs and conventional alloy matrix solid-lubricating composites. At low and moderate temperatures, the synergistic Ag-BaF2/CaF2 lubricating films eliminate the surface stress concentration upon wear, thus suppr
The term “high entropy” refers to the fact that these alloys contain five or more elements in roughly equal amounts, resulting in a complex microstructure and high configurational entropy.
HEA 2023: Home tms.org - get the latest breaking news, showbiz & celebrity photos, sport news & rumours, viral videos and top stories from tms.org Daily Mail and Mail on Sunday newspapers.