A research team led by professor YU Shuhong at the University of Science and Technology of China (USTC) has reported a new class of heteronanostructures they term axial superlattice nanowires (ASLNWs), which allow large lattice-mismatch tolerance and thus vast material combinations. The research article entitled One-Dimensional Superlattice Heterostructure Library was published in Journal of the American Chemical Society on May 12th.
E-Mail
IMAGE: (left) Schematic illustration of the technique. The stiffness of nanomaterials such as platinum (Pt) atomic chains can be measured using a length-extension resonator (LER) made with a quartz crystal. The. view more
Credit: Yoshifumi Oshima
Ishikawa, Japan - Today, many well-studied materials in various fields, such as electronics and catalysis, are close to reaching their practical limits. To further improve upon modern technology and outperform state-of-the-art devices, researchers looking for new functional materials have to push the boundaries and explore more extreme cases. A clear example of this is the study of low-dimensional materials, such as monoatomic layers (2D materials) and monoatomic chains (1D materials).
E-Mail
IMAGE: Microscope lenses reconstructed according to the method of Robert Hooke, which Antoni van Leeuwenhoek also used for his highly magnifying microscopes. view more
Credit: Rijksmuseum Boerhaave/TU Delft
A microscope used by Antoni van Leeuwenhoek to conduct pioneering research contains a surprisingly ordinary lens, as new research by Rijksmuseum Boerhaave Leiden and TU Delft shows. It is a remarkable finding, because Van Leeuwenhoek (1632-1723) led other scientists to believe that his instruments were exceptional. Consequently, there has been speculation about his method for making lenses for more than three centuries. The results of this study were published in
Credit: The authors
Extracting hydrogen from water through electrolysis offers a promising route for increasing the production of hydrogen, a clean and environmentally friendly fuel. But one major challenge of water electrolysis is the sluggish reaction of oxygen at the anode, known as the oxygen evolution reaction (OER).
A collaboration between researchers at Hunan University and Shenzhen University in China, has led to a discovery that promises to improve the OER process. In their recent paper, published in the KeAi journal
Green Energy & Environment, they report that etching - or, in other words, chemically removing - the oxide overlayers that form on the surface of the metal phosphide electrocatalysts regularly used in electrolysis, can increase OER efficiency.