Password * Remember me New to Energy Central? Applying for membership with Energy Central allows you to connect with a network of more than 200,000 global power industry professionals. Typically, climate change risks to electric power supply and demand are investigated separately. A new study led by Fonseca in Environmental Science & Technology takes on both. In so doing, the study highlights opportunities for how long-term energy planning might include a more comprehensive assessment of climate change impacts, and how adaptation and mitigation strategies can converge. In this study, Fonseca and 10 co-authors evaluate planning for capacity expansion in the U.S. Southeast in 2050. They use a series of models to explore energy mixes that include coal, hydropower, nuclear, solar, natural gas, and wind in the future relative to today. Their multi-model framework captures climate change impacts of an ensemble of future climate change projections. The suite of simulation models they use includes 20 global climate models downscaled, run through hydrologic, streamflow routing, water management, and water temperature models in order to translate global-scale changes to local temperature, precipitation, and streamflow impacts. Streamflows and temperatures from these scenarios are then used to evaluate both hydro generation potentials and thermal power deratings, capturing changes in operation characteristics including power plant efficiency, available power capacity, and water use intensity. The same climate scenarios also drive an electricity demand model. Collectively, this modeling suite provides inputs to the capacity expansion model used to evaluate future energy mixes (outlined in Figure 1b).