Nanotechnology Now Our NanoNews Digest Sponsors Home > Press > Synthetic biology reinvents development:The research team have used synthetic biology to develop a new type of genetic design that can reproduce some of the key processes that enable creating structures in natural systems, from termite nests to the development of embryos Petri dish with the bacteria E. coli forming patterns induced by the new synthetic system. Source: Ricard Solé. Abstract: Richard Feynman, one of the most respected physicists of the twentieth century, said "What I cannot create, I do not understand". Not surprisingly, many physicists and mathematicians have observed fundamental biological processes with the aim of precisely identifying the minimum ingredients that could generate them. One such example are the patterns of nature observed by Alan Turing. The brilliant English mathematician demonstrated in 1952 that it was possible to explain how a completely homogeneous tissue could be used to create a complex embryo, and he did so using one of the simplest, most elegant mathematical models ever written. One of the results of such models is that the symmetry shown by a cell or a tissue can "break" under a set of conditions. However, Turing was not able to test his ideas, and it took over 70 years before a breakthrough in biology technique was able to evaluate them decisively. Can Turing's dream be made a reality through Feynman's proposal? Genetic engineering has proved it can.