Live Breaking News & Updates on Acids res

Stay informed with the latest breaking news from Acids res on our comprehensive webpage. Get up-to-the-minute updates on local events, politics, business, entertainment, and more. Our dedicated team of journalists delivers timely and reliable news, ensuring you're always in the know. Discover firsthand accounts, expert analysis, and exclusive interviews, all in one convenient destination. Don't miss a beat — visit our webpage for real-time breaking news in Acids res and stay connected to the pulse of your community

Sex differences orchestrated by androgens at single-cell resolution

Sex differences in mammalian complex traits are prevalent and are intimately associated with androgens1–7. However, a molecular and cellular profile of sex differences and their modulation by androgens is still lacking. Here we constructed a high-dimensional single-cell transcriptomic atlas comprising over 2.3 million cells from 17 tissues in Mus musculus and explored the effects of sex and androgens on the molecular programs and cellular populations. In particular, we found that sex-biased immune gene expression and immune cell populations, such as group 2 innate lymphoid cells, were modulated by androgens. Integration with the UK Biobank dataset revealed potential cellular targets and risk gene enrichment in antigen presentation for sex-biased diseases. This study lays the groundwork for understanding the sex differences orchestrated by androgens and provides important evidence for targeting the androgen pathway as a broad therapeutic strategy for sex-biased diseases. The effects of sex and androgens on the molecular programs and cellular populations are explored using a single-cell transcriptomic atlas comprising over 2.3 million cells from different tissues in Mus musculus.

South-korea , Han , Kingdom-biobank , Acids-res ,

Bridging structural and cell biology with cryo-electron microscopy

Most life scientists would agree that understanding how cellular processes work requires structural knowledge about the macromolecules involved. For example, deciphering the double-helical nature of DNA revealed essential aspects of how genetic information is stored, copied and repaired. Yet, being reductionist in nature, structural biology requires the purification of large amounts of macromolecules, often trimmed off larger functional units. The advent of cryogenic electron microscopy (cryo-EM) greatly facilitated the study of large, functional complexes and generally of samples that are hard to express, purify and/or crystallize. Nevertheless, cryo-EM still requires purification and thus visualization outside of the natural context in which macromolecules operate and coexist. Conversely, cell biologists have been imaging cells using a number of fast-evolving techniques that keep expanding their spatial and temporal reach, but always far from the resolution at which chemistry can be understood. Thus, structural and cell biology provide complementary, yet unconnected visions of the inner workings of cells. Here we discuss how the interplay between cryo-EM and cryo-electron tomography, as a connecting bridge to visualize macromolecules in situ, holds great promise to create comprehensive structural depictions of macromolecules as they interact in complex mixtures or, ultimately, inside the cell itself. The interplay between cryo-electron microscopy and cryo-electron tomography to define complex macromolecular assemblies and visualize them in situ is explored.

South-korea , Han , Protein-data-bank , Pdb-consortium , Dn-software , Schwartz , Young , Allard , Protein-data , Trends-cell-biol , Cell-biol

Improving prime editing with an endogenous small RNA-binding protein

Prime editing enables the precise modification of genomes through reverse transcription of template sequences appended to the 3′ ends of CRISPR–Cas guide RNAs1. To identify cellular determinants of prime editing, we developed scalable prime editing reporters and performed genome-scale CRISPR-interference screens. From these screens, a single factor emerged as the strongest mediator of prime editing: the small RNA-binding exonuclease protection factor La. Further investigation revealed that La promotes prime editing across approaches (PE2, PE3, PE4 and PE5), edit types (substitutions, insertions and deletions), endogenous loci and cell types but has no consistent effect on genome-editing approaches that rely on standard, unextended guide RNAs. Previous work has shown that La binds polyuridine tracts at the 3′ ends of RNA polymerase III transcripts2. We found that La functionally interacts with the 3′ ends of polyuridylated prime editing guide RNAs (pegRNAs). Guided by these results, we developed a prime editor protein (PE7) fused to the RNA-binding, N-terminal domain of La. This editor improved prime editing with expressed pegRNAs and engineered pegRNAs (epegRNAs), as well as with synthetic pegRNAs optimized for La binding. Together, our results provide key insights into how prime editing components interact with the cellular environment and suggest general strategies for stabilizing exogenous small RNAs therein. Genome-scale genetic screens identify the small RNA-binding protein La as a strong mediator of prime editing.

Delta , Adamson , Staphylococcusaureus-cas , Acids-res , Protein-cell , Open-source-softw ,

Formation of memory assemblies through the DNA-sensing TLR9 pathway

As hippocampal neurons respond to diverse types of information1, a subset assembles into microcircuits representing a memory2. Those neurons typically undergo energy-intensive molecular adaptations, occasionally resulting in transient DNA damage3–5. Here we found discrete clusters of excitatory hippocampal CA1 neurons with persistent double-stranded DNA (dsDNA) breaks, nuclear envelope ruptures and perinuclear release of histone and dsDNA fragments hours after learning. Following these early events, some neurons acquired an inflammatory phenotype involving activation of TLR9 signalling and accumulation of centrosomal DNA damage repair complexes6. Neuron-specific knockdown of Tlr9 impaired memory while blunting contextual fear conditioning-induced changes of gene expression in specific clusters of excitatory CA1 neurons. Notably, TLR9 had an essential role in centrosome function, including DNA damage repair, ciliogenesis and build-up of perineuronal nets. We demonstrate a novel cascade of learning-induced molecular events in discrete neuronal clusters undergoing dsDNA damage and TLR9-mediated repair, resulting in their recruitment to memory circuits. With compromised TLR9 function, this fundamental memory mechanism becomes a gateway to genomic instability and cognitive impairments implicated in accelerated senescence, psychiatric disorders and neurodegenerative disorders. Maintaining the integrity of TLR9 inflammatory signalling thus emerges as a promising preventive strategy for neurocognitive deficits. Learning results in persistent double-stranded DNA breaks, nuclear rupture and release of DNA fragments and histones within hippocampal CA1 neurons that, following TLR9-mediated DNA damage repair, results in their recruitment to memory circuits.

South-korea , Han , Kawai , Death-differ , Cell-biol , Acids-res ,

AIRE relies on Z-DNA to flag gene targets for thymic T cell tolerization

AIRE is an unconventional transcription factor that enhances the expression of thousands of genes in medullary thymic epithelial cells and promotes clonal deletion or phenotypic diversion of self-reactive T cells1–4. The biological logic of AIRE’s target specificity remains largely unclear as, in contrast to many transcription factors, it does not bind to a particular DNA sequence motif. Here we implemented two orthogonal approaches to investigate AIRE’s cis-regulatory mechanisms: construction of a convolutional neural network and leveraging natural genetic variation through analysis of F1 hybrid mice5. Both approaches nominated Z-DNA and NFE2–MAF as putative positive influences on AIRE’s target choices. Genome-wide mapping studies revealed that Z-DNA-forming and NFE2L2-binding motifs were positively associated with the inherent ability of a gene’s promoter to generate DNA double-stranded breaks, and promoters showing strong double-stranded break generation were more likely to enter a poised state with accessible chromatin and already-assembled transcriptional machinery. Consequently, AIRE preferentially targets genes with poised promoters. We propose a model in which Z-DNA anchors the AIRE-mediated transcriptional program by enhancing double-stranded break generation and promoter poising. Beyond resolving a long-standing mechanistic conundrum, these findings suggest routes for manipulating T cell tolerance. Z-DNA anchors the AIRE-mediated transcriptional program by enhancing the generation of double-stranded breaks and promoter poising.

Santiago , Regióetropolitana , Chile , Las-vegas , Association-for-computational-linguistics , Cell-biol , Acids-res , Computational-linguistics , Computer-vision , Pattern-recognition , Genome-biol , Unique-molecular-identifiers

Anti-TIGIT antibody improves PD-L1 blockade through myeloid and Treg cells

Tiragolumab, an anti-TIGIT antibody with an active IgG1κ Fc, demonstrated improved outcomes in the phase 2 CITYSCAPE trial (ClinicalTrials.gov: NCT03563716 ) when combined with atezolizumab (anti-PD-L1) versus atezolizumab alone1. However, there remains little consensus on the mechanism(s) of response with this combination2. Here we find that a high baseline of intratumoural macrophages and regulatory T cells is associated with better outcomes in patients treated with atezolizumab plus tiragolumab but not with atezolizumab alone. Serum sample analysis revealed that macrophage activation is associated with a clinical benefit in patients who received the combination treatment. In mouse tumour models, tiragolumab surrogate antibodies inflamed tumour-associated macrophages, monocytes and dendritic cells through Fcγ receptors (FcγR), in turn driving anti-tumour CD8+ T cells from an exhausted effector-like state to a more memory-like state. These results reveal a mechanism of action through which TIGIT checkpoint inhibitors can remodel immunosuppressive tumour microenvironments, and suggest that FcγR engagement is an important consideration in anti-TIGIT antibody development. A high baseline of intratumoural macrophages and regulatory T cells is associated with better outcomes in patients with non-small cell lung cancer treated with atezolizumab plus tiragolumab, but not with atezolizumab alone.

South-korea , Han , Cytometryb-clin , Laboratory-for-functional-epigenetics , Cancer-biol , Cancer-ther , Molecular-signatures-database , Proteome-res , Acids-res , Functional-epigenetics ,

Targeted protein degradation via intramolecular bivalent glues

Targeted protein degradation is a pharmacological modality that is based on the induced proximity of an E3 ubiquitin ligase and a target protein to promote target ubiquitination and proteasomal degradation. This has been achieved either via proteolysis-targeting chimeras (PROTACs)—bifunctional compounds composed of two separate moieties that individually bind the target and E3 ligase, or via molecular glues that monovalently bind either the ligase or the target1–4. Here, using orthogonal genetic screening, biophysical characterization and structural reconstitution, we investigate the mechanism of action of bifunctional degraders of BRD2 and BRD4, termed intramolecular bivalent glues (IBGs), and find that instead of connecting target and ligase in trans as PROTACs do, they simultaneously engage and connect two adjacent domains of the target protein in cis. This conformational change ‘glues’ BRD4 to the E3 ligases DCAF11 or DCAF16, leveraging intrinsic target–ligase affinities that do not translate to BRD4 degradation in the absence of compound. Structural insights into the ternary BRD4–IBG1–DCAF16 complex guided the rational design of improved degraders of low picomolar potency. We thus introduce a new modality in targeted protein degradation, which works by bridging protein domains in cis to enhance surface complementarity with E3 ligases for productive ubiquitination and degradation. Studies using genetic screening, biophysical characterization and structural reconstitution elucidate the mechanism of action and enable rational design of a new class of functional compounds that glue target proteins to E3 ligases via intramolecularly bridging two domains to enhance intrinsic protein–protein interactions and promote target ubiquitination and degradation.

South-korea , Han , Van-molle , Acta-crystallogr , Development-of-bromotag , Drug-discovery , Nucleic-acids-res , Acids-res , Graphics-system ,

Evaluating the efficacy and safety of pozelimab in patients with CD55 deficiency with hyperactivation of complement, angiopathic thrombosis, and protein-losing enteropathy disease: an open-label phase 2 and 3 study

Evaluating the efficacy and safety of pozelimab in patients with CD55 deficiency with hyperactivation of complement, angiopathic thrombosis, and protein-losing enteropathy disease: an open-label phase 2 and 3 study
thelancet.com - get the latest breaking news, showbiz & celebrity photos, sport news & rumours, viral videos and top stories from thelancet.com Daily Mail and Mail on Sunday newspapers.

J-pediatr-hematol , J-pediatr-gastroenterol-nutr , Eshach-adiv , Ambul-pediatr , Drug-administration , Englj-med , Rev-immunol , Clin-immunol , Bowel-dis , Pediatr-gastroenterol-nutr , Pediatr-hematol-oncol , Pediatric-quality

Nuclear morphology is shaped by loop-extrusion programs

It is well established that neutrophils adopt malleable polymorphonuclear shapes to migrate through narrow interstitial tissue spaces1–3. However, how polymorphonuclear structures are assembled remains unknown4. Here we show that in neutrophil progenitors, halting loop extrusion—a motor-powered process that generates DNA loops by pulling in chromatin5—leads to the assembly of polymorphonuclear genomes. Specifically, we found that in mononuclear neutrophil progenitors, acute depletion of the loop-extrusion loading factor nipped-B-like protein (NIPBL) induced the assembly of horseshoe, banded, ringed and hypersegmented nuclear structures and led to a reduction in nuclear volume, mirroring what is observed during the differentiation of neutrophils. Depletion of NIPBL also induced cell-cycle arrest, activated a neutrophil-specific gene program and conditioned a loss of interactions across topologically associating domains to generate a chromatin architecture that resembled that of differentiated neutrophils. Removing NIPBL resulted in enrichment for mega-loops and interchromosomal hubs that contain genes associated with neutrophil-specific enhancer repertoires and an inflammatory gene program. On the basis of these observations, we propose that in neutrophil progenitors, loop-extrusion programs produce lineage-specific chromatin architectures that permit the packing of chromosomes into geometrically confined lobular structures. Our data also provide a blueprint for the assembly of polymorphonuclear structures, and point to the possibility of engineering de novo nuclear shapes to facilitate the migration of effector cells in densely populated tumorigenic environments. In neutrophil progenitor cells, stopping the process of loop extrusion by depleting nipped-B-like protein (NIPBL) results in the assembly of polymorphonuclear structures and the activation of a neutrophil-specific gene program.

Elie-metchnikoff , K-organization , Cell-biol , Untersuchungen-des , Cornelia-de-lange , Acids-res ,

A break in mitochondrial endosymbiosis as a basis for inflammatory diseases

Mitochondria retain bacterial traits due to their endosymbiotic origin, but host cells do not recognize them as foreign because the organelles are sequestered. However, the regulated release of mitochondrial factors into the cytosol can trigger cell death, innate immunity and inflammation. This selective breakdown in the 2-billion-year-old endosymbiotic relationship enables mitochondria to act as intracellular signalling hubs. Mitochondrial signals include proteins, nucleic acids, phospholipids, metabolites and reactive oxygen species, which have many modes of release from mitochondria, and of decoding in the cytosol and nucleus. Because these mitochondrial signals probably contribute to the homeostatic role of inflammation, dysregulation of these processes may lead to autoimmune and inflammatory diseases. A potential reason for the increased incidence of these diseases may be changes in mitochondrial function and signalling in response to such recent phenomena as obesity, dietary changes and other environmental factors. Focusing on the mixed heritage of mitochondria therefore leads to predictions for future insights, research paths and therapeutic opportunities. Thus, whereas mitochondria can be considered ‘the enemy within’ the cell, evolution has used this strained relationship in intriguing ways, with increasing evidence pointing to the recent failure of endosymbiosis being critical for the pathogenesis of inflammatory diseases. We suggest that as mitochondrial signals probably contribute to the homeostatic role of inflammation, dysregulation of these processes may lead to autoimmune and inflammatory diseases, with increasing evidence pointing to the recent failure of endosymbiosis being crucial.

Prag , Praha , Hlavníesto , Czech-republic , United-states , Sardon-puig , Walther , Elsevier , Drug-discov , Cell-sci , Cell-biol , Arthritis-rheumatol